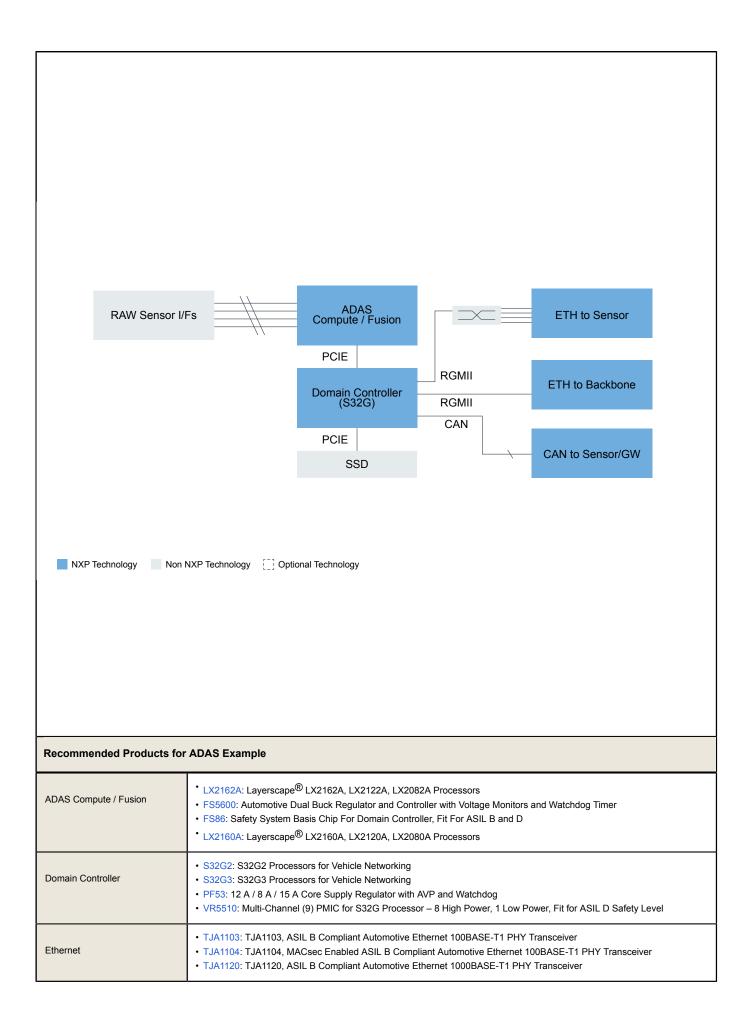


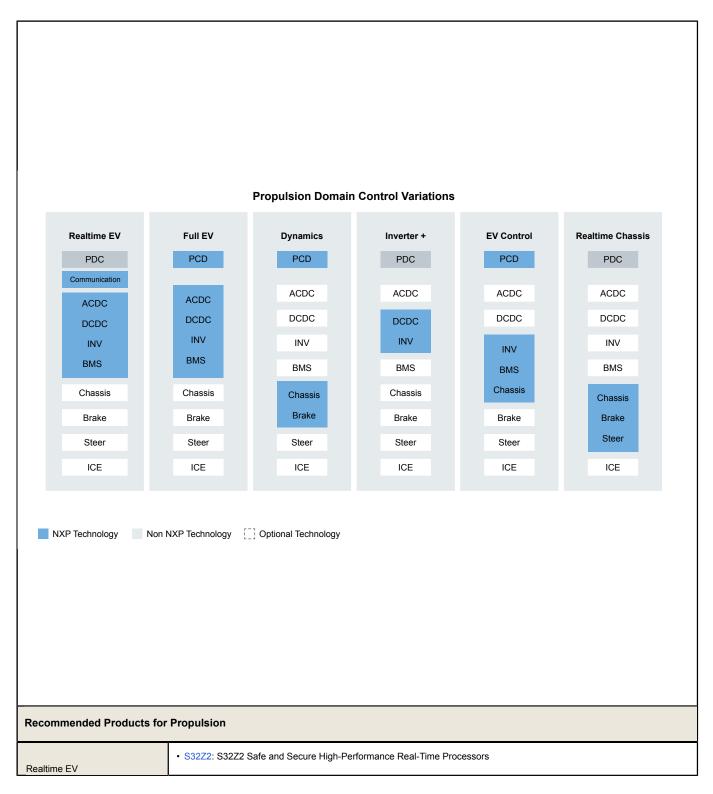
Domain Controller

Last Updated: Nov 16, 2023


Domain control is the centralization of control of similar functions and functionality. Domain architectures aid in the reduction of vehicle engine control units (ECUs) and in the simplification of software development and distribution, as system complexity within the vehicle grows. The NXP S32 automotive platform captures the opportunity to move towards the transformation of vehicle electronic architectures (VEA) and the transition to the software-defined vehicle (SDV).

OEMs are approaching the transformation of the VEA by following two different vectors. The logical path is about coordination and consolidation of functional domains, including body domain, powertrain domain and ADAS domain. This is where domain controllers are required and where NXP provides optimized products and insights.

The other vector is the physical path, which looks to reduce the complexity of the wiring harness and thereby reduces vehicle weight and reduces costs. Zone controllers, which control physical zones of the vehicle, improve the efficiency of energy consumption as well.


Both of these vectors can relate to each other, and OEMs are following architecture strategies that combine each of these vectors in varying ways. NXP provides optimized hardware and software to meet the needs of both vectors.

ADAS Example Block Diagram

Ethernet	 TJA1103: TJA1103, ASIL B Compliant Automotive Ethernet 100BASE-T1 PHY Transceiver TJA1104: TJA1104, MACsec Enabled ASIL B Compliant Automotive Ethernet 100BASE-T1 PHY Transceiver TJA1120: TJA1120, ASIL B Compliant Automotive Ethernet 1000BASE-T1 PHY Transceiver
CAN	 TJA1463: CAN Signal Improvement Capability Transceiver with Sleep Mode TJA1462: CAN Signal Improvement Capability Transceiver with Standby Mode

Propulsion Block Diagram

	 S32E2: S32E2 Safe and Secure High-Performance Real-Time Processors with Actuation Support FS86: Safety System Basis Chip For Domain Controller, Fit For ASIL B and D PF5030: Multi-Channel PMIC for Automotive Applications
Full EV	 S32Z2: S32Z2 Safe and Secure High-Performance Real-Time Processors S32E2: S32E2 Safe and Secure High-Performance Real-Time Processors with Actuation Support FS86: Safety System Basis Chip For Domain Controller, Fit For ASIL B and D PF5030: Multi-Channel PMIC for Automotive Applications
Full EV	 S32Z2: S32Z2 Safe and Secure High-Performance Real-Time Processors S32E2: S32E2 Safe and Secure High-Performance Real-Time Processors with Actuation Support
Dynamics	 S32E2: S32E2 Safe and Secure High-Performance Real-Time Processors with Actuation Support S32Z2: S32Z2 Safe and Secure High-Performance Real-Time Processors FS86: Safety System Basis Chip For Domain Controller, Fit For ASIL B and D PF5030: Multi-Channel PMIC for Automotive Applications
Dynamics	 S32E2: S32E2 Safe and Secure High-Performance Real-Time Processors with Actuation Support S32Z2: S32Z2 Safe and Secure High-Performance Real-Time Processors
Inverter +	 S32K39-37: S32K39/37/36 Microcontrollers for Electrification Applications FS26: Safety System Basis Chip with Low Power, for ASIL D Systems
EV Control	 S32Z2: S32Z2 Safe and Secure High-Performance Real-Time Processors S32E2: S32E2 Safe and Secure High-Performance Real-Time Processors with Actuation Support PF5030: Multi-Channel PMIC for Automotive Applications FS86: Safety System Basis Chip For Domain Controller, Fit For ASIL B and D
EV Control	 S32E2: S32E2 Safe and Secure High-Performance Real-Time Processors with Actuation Support S32Z2: S32Z2 Safe and Secure High-Performance Real-Time Processors
Realtime Chassis	 S32E2: S32E2 Safe and Secure High-Performance Real-Time Processors with Actuation Support S32Z2: S32Z2 Safe and Secure High-Performance Real-Time Processors PF5030: Multi-Channel PMIC for Automotive Applications FS86: Safety System Basis Chip For Domain Controller, Fit For ASIL B and D
Communication	 TJA1463: CAN Signal Improvement Capability Transceiver with Sleep Mode TJA1462: CAN Signal Improvement Capability Transceiver with Standby Mode TJA1103: TJA1103, ASIL B Compliant Automotive Ethernet 100BASE-T1 PHY Transceiver TJA1104: TJA1104, MACsec Enabled ASIL B Compliant Automotive Ethernet 100BASE-T1 PHY Transceiver TJA1120: TJA1120, ASIL B Compliant Automotive Ethernet 100BASE-T1 PHY Transceiver

View our complete solution for Domain Controller.

Note: The information on this document is subject to change without notice.

www.nxp.com

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. The related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. © 2024 NXP B.V.