

S32G QuadSPI Deep Dive

by: NXP Semiconductors

1. Introduction

This application note provides an in-depth description

of the QuadSPI controller based on the S32G family of

devices, mainly including the following parts:

• Primarily it explains the main supported features

of the QuadSPI controller.

• To facilitate the use or porting of the external

flash memory devices, the configuration of the

QuadSPI pins, clocks, and registers is described

in detail.

• The S32G chip supports loading images and

booting from external flash via QuadSPI

interface, the requirements of the external flash

device which can support booting, as well as

reconfiguration parameters are introduced.

• How to add new a flash algorithm via the Flash

SDK is also described.

• In addition, NXP provides flash driver FLS

based on RTD/MCAL, how to configure the

FLS driver via the EB tool is also included in

this document.

• Finally, for the debugging of QSPI, some tips,

and examples of physical layer waveform

analysis are given.

NXP Semiconductors Document Number: AN13563

Application Notes Rev. 0 , 02/2022

Contents

1. Introduction .. 1
2. QuadSPI overview... 2
3. QuadSPI configuration .. 2

3.1. Pin configuration .. 2
3.2. Clock configuration .. 5
3.3. Register configuration ... 8

4. QuadSPI Boot ... 19
4.1. BootROM supported QuadSPI flashes 19
4.2. The reconfiguration parameter 21

5. Flash SDK usage ... 23
5.1. S32 flash tool .. 23
5.2. How does the flash tool work 24
5.3. Flash SDK usage .. 25

6. Flash Driver configuration method – EB tresos............... 29
6.1. The FLS Driver .. 29
6.2. The FLS example from RTD 2.0.0 29

7. QuadSPI debug ... 42
7.1. Waveform analysis example – waveform
decoding(read ID) .. 42
7.2. Waveform analysis example – fast read command 43
7.3. Some debug tips for QuadSPI 45

8. References .. 46

QuadSPI configuration

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

2 NXP Semiconductors

2. QuadSPI overview

S32G is the ideal solution for gateway and safety domain controller. S32G does not have internal flash,

the QuadSPI interface is used to connect external flash memory. To improve the efficiency of accessing

external flash, QuadSPI has many features to accelerate the access efficiency. The main support features

are:

• Command-driven interface: Flexible sequence engine to support various flash memory vendor

devices

• Multiple operation modes: Interface like standard SPI but optionally utilizes 2(Dual), 4(Quad), or

8(Octal) data lines to transfer

• Multiple sampling modes: Can support SDR(Single Data Rate)/STR(Single Transfer Rate) and

DDR(Double Data Rate)/DTR(Double Transfer Rate) mode to further increase throughput

• Multiple access modes: AHB master to read RX buffer data through AMBA AHB (64-bit width

interface) or IPS registers space (32-bit access) and fill TX buffer via IPS register space (32-bit

access)

• Supports for all types of addressing: Typically, 24-bit/32-bit addressing

NOTE

• Currently, all tests and waveforms in this document are based on

G2, and does not completely cover G3. The values used in this

document are for S32G2, they may differ for S32G3.

• This document's focus is on the Macronix serial NOR flash

(MX25UW51245G) used in NXP evaluation platforms

(S32G_VNP_RDB2).

3. QuadSPI configuration

3.1. Pin configuration

3.1.1. External signals

The external signals of the QuadSPI controller can be divided into five types according to a different

function, as shown in the following table.

Table 1. The external signals of the QuadSPI controller

Function QSPI Signal Pin Name MSCR/IMCR

Chip Select

QSPI_CS_A0 PG_04 MSCR[100] = 0x00203021
QSPI_CS_A1 PG_05 MSCR[101] = 0x00203021
QSPI_CS_B0 PD_00 MSCR[48] = 0x00203002
QSPI_CS_B1 PD_01 MSCR[49] = 0x00203002

Clock QSPI_CK_A PG_00 MSCR[96] = 0x00200021

QuadSPI configuration

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

NXP Semiconductors 3

Function QSPI Signal Pin Name MSCR/IMCR
QSPI_CK_A_b PG_01 MSCR[97] = 0x00200021
QSPI_CK_2A PG_02 MSCR[98] = 0x00200021
QSPI_CK_2A_b PG_03 MSCR[99] = 0x00200021
QSPI_CK_B PD_06 MSCR[54] = 0x00200002
QSPI_CK_B_b PD_07 MSCR[55] = 0x00200002

Data I/O

QSPI_DATA_A_O[0:7] PF_05 - PF12
MSCR[85:92] = 0x00280021

QSPI_DATA_A_I[0:7] IMCR[28:35] = 0x00000002

QSPI_DATA_B_O[0:7]

 QSPI_DATA_B_I[0:7]

Data Strobe

QSPI_DQS_A_O PF_13
MSCR[93] = 0x00280021

QSPI_DQS_A_I IMCR[36] = 0x00000002
QSPI_DQS_B_O

 QSPI_DQS_B_I

Interrupt
QSPI_INTA_b PF_14

MSCR[94] = 0x00003020
IMCR[37] = 0x00000002

QSPI_INTB_b

There are some recommendations for QuadSPI external signals:

• Chip select: Chip select is an active low signal, thus an external resistor (2K-10K) is needed to

pull up a QuadSPI chip select signal to ensure the default value will be high.

• Clock: Connect to differential clock input for some Hyper-Flash devices, if needed (like

S26KS512S2).

• Interrupt: Connect to flash ECC error-out signal, if available.

3.1.2. A pitfall for interrupt pin (PF_14)

Due to the limitation of IO resources, the user may want to use the QuadSPI controller interrupt pin

(PF_14) as a GPIO output pin.

When booting from external QuadSPI flash, BootROM sets INT# pin (PF_14) as the primary function

(QSPI_INTA_b). The specific configuration are, MSCR[94] = 0x83020, IMCR[37]=0x02. Once PF_14

is set as QuadSPI A interrupt input and enable internal pull-up. The block diagram of the configuration

is shown in the following figure.

QuadSPI configuration

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

4 NXP Semiconductors

Figure 1. Configurate PF_14 pin as the primary function

There are some traps when trying to set this pin as a GPIO output:

• If IMCR setting is not changed, after MSCR is set to output first, GPDI will go to the low level,

causing QSPI access failure.

• If external input is low level (such as directly grounded), it may cause QSPI boot failure.

There is a separate muxing control for this pin, it can be changed to a normal GPIO pin. IMCR[37] has

three possible values, i.e.- 0x0, 0x1, and 0x2 which signifies “disable high”, “disable low” and

“PF_14”. Since Interrupt pin to QSPI is active low, writing 0x0 on IMCR[37] or MSCR[549] to make it

as “disable high”. Please note that MSCR[549] = IMCR[37]. MSCR[94] SSS value should be

configured as 0 to select pin as GPIO.

Figure 2. Configurate PF_14 pin as GPIO output function

Some points to remember for PF_14:

• Configure IMCR before MSCR in configuration sequence when setting this pin as a normal

GPIO function

QuadSPI configuration

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

NXP Semiconductors 5

• Ensure that PF_14 remains high when booting from external flash, otherwise, it may cause boot

failure

3.2. Clock configuration

The QuadSPI module can be divided into two clock domains, the SCLK clock domain and the Host

clock domain as shown in the following figure.

Figure 3. The clock domains of the QuadSPI module

The SCLK(Serial Flash Clock) clock domain is sourced from QSPI_1X_CLK/QSPI_2X_CLK. The

Host clock domain is sourced from XBAR_DIV3_CLK.

3.2.1. Serial flash clock domain

The QSPI_1X_CLK and QSPI_2X_CLK are used for the protocol clock signals, that is serial flash

clock.

QuadSPI configuration

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

6 NXP Semiconductors

Figure 4. The serial flash clock domain

As shown in the above figure, the clock tree shows the paths of the serial flash clock (QSPI_1_CLK):

• FXOSC → PLL → PERIPH_FES → PERIPH_DFS1_CLK → MC_CGM_0_MUX_12 →

QSPI_1/2_CLK

• FIRC→ MC_CGM_0_MUX_12 → QSPI_1/2_CLK

• FIRC→ PLL → PERIPH_FES → PERIPH_DFS1_CLK → MC_CGM_0_MUX_12 →

QSPI_1/2_CLK

The path described in the first bullet is the recommended clock path, other two are not recommended to

be used by application. The input clock source of PLL is selected by the REFCLKSEL field in

PLLCLKMUX(PLL Clock Multiplexer). For example, PLLCLKMUX[REFCLKSEL] = 1 means select

FXOSC(40 MHz) as PLL clock source.

The RDIV field in PLLDV(PLL Divider) sets the input clock divider for PLL. For example, PLL[RDIV]

= 1 means the PLL input clock pre-divider is 1 and the MFI field in PPLDV specified establishes the

multiplication factor applied to the reference frequency. For example, PLLDIV[MFI]=50, then the PLL

VCO output is 40/1*50 = 2000 MHz.

QuadSPI configuration

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

NXP Semiconductors 7

DFS IP takes the input clock from PLL and generates multiple phases of the clock. Six independent

phase dividers then use these phases. The following equation describes the relationship between the

input and output clock of each phase divider:

For example, if DVPORT0[MFI]=1, DVPORT0[MFN]=9 in peripheral PLL, then the

PERIPH_DFS1_CLK output is 2000/(2*(1+9/36))=2000/2.5 = 800 MHz

The QSPI_1/2_CLK clock is output by clock mux 12. The source clock for clock mux 12 is selected by

the SELCTL field in MUX_12_CSC(Clock Mux 12 Select Control Register). For example,

MUX_12_CSC[SELCTL] = 26 means select PERIPH_DFS1_CLK as clock mux 12 clock source.

If the DE field in MUX_12_DC_0 (Clock Mux 12 Divider 0 Control Register) is enabled, then the

frequency of QSPI_2_CLK is divided by the output of clock mux 12. For example,

MUX_12_DC_0[DE]=1 and MUX_12_DC_0[DIV]=1, the QSPI_2_CLK should be 800 MHz/2 = 400

MHz, that is serial flash clock (QSPI_1_CLK) is 400 MHz/2 = 200 MHz.

The following screenshot shows the typical values of the related registers mentioned above when

configuring some common QuadSPI clocks.

Figure 5. Typical serial flash clock value settings

NOTE

In the above table the FXOSC is assumed to be 40 MHz.

3.2.2. Host clock domain

As can be seen in Figure 2, the REG_INTF_CLK, AHB_CLK, and MODULE_CLK are sourced from

the XBAR_DIV3_CLK signal.

QuadSPI configuration

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

8 NXP Semiconductors

Figure 6. The XBAR_DIV3_CLK clock

The frequency of XBAR_DIV3_CLK is imposed by other system requirements and is already

configured, the value is 133 MHz.

3.2.3. QuadSPI clock limitation

The maximum protocol frequencies can be found in the device datasheet. There are some limitations for

the QuadSPI clock:

• The ratio of bus clock period to flash clock period must not be less than 1:5.

o This means SCLK freq/Bus CLK freq > 1/5, thus SCLK freq > 26.67M

• Derive DDR octal writes using the following equation:

o (3 x flash clock period) + (3 x bus clock period) < (8 x flash clock period)

o This means SCLK freq/Bus clk freq < 5/3, thus SCLK freq < 222.167M

3.3. Register configuration

Before accessing the external flash device via the QuadSPI controller, we need to configure the QuadSPI

controller correctly. Below are some general configuration steps:

• Configure flash memory address

o Serial flash memory top address

o Serial flash device address & address configuration

• Configure DQS sampling method

• Configure DLL and DQS delay chain

QuadSPI configuration

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

NXP Semiconductors 9

• Configure the data input hold requirement of external flash memory

• Configure the LUTs with QuadSPI command sequences

• Configure AHB access

NOTE

For each register field, the write access conditions are specified in the

detailed resister description, please refer to S32G RM for more

information.

3.3.1. Flash memory address

3.3.1.1. Serial flash memory top address

QuadSPI can support single mode, serial mode, and parallel mode for the supported flash memory ports

A and B. The three modes are shown in the following figures.

Figure 7. Single mode for single-die and dual-die

Figure 8. Serial mode and parallel mode

The size of the flash memory devices is mapped with the system memory space based on the

configurations of the SFA1AD, SFA2AD, SFB1AD, and SFB2AD registers. Take 64 MB

MX25UW51245 Nor flash device as an example in single mode. The settings are as follows:

QuadSPI configuration

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

10 NXP Semiconductors

SFA1AD = SFA2AD = SFB1AD = SFB2AD = 0x4000000

3.3.1.2. Serial flash device address

SFAR

When sending an address to access external flash, a dedicated register SFAR (Serial Flash Memory

Address Register) is required. The address must be within the external flash range of the system memory

map (0x0000_0000 – 0x1FFF_FFFF). The QuadSPI module automatically translates this address on the

memory map to the flash memory. If an SFM command does not need any address, then SFAR should

be set to the QuadSPI_AMBA_BASE (0x0000_0000).

SFACR

SFACR (Serial Flash Address Configuration Register) is used to configure the address requirements that

are specific to serial flash memory. Define the width of the column address in the SFACR[CAS] field.

If no column address is required, SFACR[CAS] must be 0. In 24-bit mode, when SFACR[CAS] is 3,

then bits 3-26 are sent to the flash memory as its page address, and bits 2-0 are sent as its column

address. The total number of address bits requested by the flash memory, as its page and column

address, must not be more than 32 bits.

Indicate if the memory is word or byte-addressable in the SFACR[WA] field. If SFACE[WA] is 1 and

the incoming address is 2004h, the controller re-maps this address to access the flash memory location

1002h.

3.3.2. Supported DQS sampling method

There are two supported DQS sampling methods, pad loopback and external DQS. The sampling

method is set by the MCR[DQS_FA/B_SEL] field.

• Pad Loopback: The internal clock is loop-backed from the dummy internal pad to compensate

for data pad delays and used as the sampling strobe signal. Pad Loopback is recommended for

SDR mode up to 133 MHz and DDR mode up to 66 MHz.

• External DQS: The data strobe signal(DQS/RWDS) is an output from the flash memory device

that indicates when data is being transferred from the flash memory to the host controller.

External DQS is recommended for DDR mode higher than 66 MHz. The data strobe signal

(DQS/RWDS) is used to sample the read data. Both DQS and the data sent by the flash memory

move in the same direction, therefore, it is relatively easier to achieve at higher frequencies.

QuadSPI configuration

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

NXP Semiconductors 11

Figure 9. Sampling signal generation

3.3.3. DLL and DQS delay chain

The DLL is a general-purpose, dynamically adaptive clock delay module. It provides the ability to select

a quantized delay (infractions of the clock period) regardless of on-chip variations such as process,

voltage, and temperature (PVT).

The ‘DQS delay circuits’ are used to delay the selected signal and generate the actual strobe signal used

to sample the incoming read data from external QSPI Flash.

QuadSPI configuration

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

12 NXP Semiconductors

Figure 10. The DQS delay circuits

The DLL bypass mode and DLL auto update mode are supported in S32G, the specific programming

sequence for the corresponding mode is as follows:

• DLL Bypass Mode: The DLL is disabled in this mode. The slave delay chain is directly

configured using register fields DLLCR*[SLV_DLY_COARSE] and

DLLCR*[SLV_DLY_OFFSET]. This is a static configuration (performed by application

software or QSPI device driver). It is recommended to use in SDR mode.

DLL bypass mode setting steps:

1. Program DLLCRA[SLV_EN]=1, DLLCRA[SLV_DLL_BYPASS]=1, and

DLLCRA[SLAVE_AUTO_UPDT]=0.

2. Program the following fields to provide the desired DQS delay for sampling,

DLLCRA[SLV_FINE_OFFSET], DLLCRA[SLV_DLY_COARSE], and

DLLCR[FREQEN]. See the chip-specific QuadSPI information for the supported

programming settings.

3. Program DLLCRA[SLV_UPD]=1 to load these values in the slave delay chain.

4. Check the slave delay chain update status by polling DLLSR[SLVA_LOCK]=1 and clear

DLLCRA[SLV_UPD] after confirming the update state.

• DLL Auto Update mode: The DLL is enabled in this mode. Performs the ‘search’ to identify the

right delay chain settings to generate T/16 (and multiples of T/16) delay using the slave delay

chain. The slave delay chain is automatically reconfigured every time the DLL regains the lock

condition. No application S/W intervention is required, once the DLL is configured initially. It is

recommended to be used in DDR mode. Steps to step up the DLL auto-update mode setting:

1. Program DLLCRA[SLV_EN]=1, DLLCRA[SLV_DLL_BYPASS]=0, and

DLLCRA[SLAVE_AUTO_UPDT]=1.

QuadSPI configuration

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

NXP Semiconductors 13

2. Program the DLL configuration by using DLLCRA[DLL_REFCNTR] and

DLLCRA[DLLRES]. See the chip-specific QuadSPI information for the supported DLL

configuration settings.

3. Program the slave settings to delay DQS by using the fields,

DLLCRA[SLV_FINE_OFFSET], DLLCRA[SLV_DLY_OFFSET], and DLLCR[FREQEN].

See the chip-specific QuadSPI information for the supported settings.

4. If offset delay needs to be updated on the slave chain, program DLLCRA[SLV_UPD]=1.

5. Enable DLL by programming DLLCRA[DLLEN]=1 and reset DLLCRA[SLV_UPD]=0. The

slave delay chain is updated automatically and can be checked by polling

DLLSR[SLVA_LOCK]==1

3.3.4. Data input hold requirement of flash memory

The Flash memory configuration register(FLSHCR) contains the timings that are specific to the flash

memory device.

In the SDR mode:

MCR[DDR_EN] = 0, FLSHCR[TDH] = 0, FLSHCR[TCSS] = 3, FLSHCR[TCSH] = 3

In the DDR mode:

MCR[DDR_EN] = 1, FLSHCR[TDH] = 1, FLSHCR[TCSS] = 3, FLSHCR[TCSH] = 3

Figure 11. QuadSPI configurations

3.3.5. Look Up Table(LUT)

The sequences for a particular external QuadSPI flash are stored in the LUT. The LUT consists of up to

16 possible sequences that can be programmed in the LUT, and up to 10 instructions-operand pairs in

one sequence. Writing the IPCR[SEQID] field with a LUT index will trigger execution.

QuadSPI configuration

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

14 NXP Semiconductors

Figure 12. The LUTs

3.3.5.1. Example to configure the LUT

Transform the FAST_READ3B sequence into LUT sequence:

1. Command(0x0B)

2. Address bits(0x18)

3. Dummy cycles(0x08)

4. Read data bytes(0x08)

Figure 13. Transform the FAST_READ3B sequence into LUT sequence

3.3.6. Peripheral bus access

The peripheral bus allows the software to write and read QSPI module registers including RX and TX

buffers. Read, write and erase can be implemented over the peripheral bus.

QuadSPI configuration

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

NXP Semiconductors 15

Figure 14. Peripheral bus access

3.3.7. AHB bus access

AHB bus allows AHB masters to read external QSPI flash as the system memory. External flash

memory can be mapped to system memory at the address range, 0x0000_0000 – 0x1FFF_FFFF. The

SEQID field in the Buffer Generic Configuration Register (BFGENCR) must be configured with the ID

of one of the sequences defined in LUTs. By default, BFGEBCR[SEQID] is set to 0, it points to the

default read sequence(the basic read command is 0x03).

Figure 15. AHB bus access

3.3.8. Read the external flash device

3.3.8.1. Read – IP command

The steps to generate a read sequence via peripheral bus is shown in the following figure.

QuadSPI configuration

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

16 NXP Semiconductors

Figure 16. Read - IP command

1. Write 1 to clear RX buffer in MCR[LCR_RXF] field

2. Write the address that needs to be accessed in SFAR

3. Write the length of data to be read in IPCR[IDASZ], write the IPCR[SEQID] to trigger the read

sequence

4. Check SR[BUSY] to wait for the module is idle, and check FR[TFF] to wait for IP command

transaction to be finished

5. Read data from RBDR

3.3.8.2. Read – AHB command

The steps to generate a read sequence via AHB bus is shown in the following figure.

QuadSPI configuration

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

NXP Semiconductors 17

Figure 17. Read – AHB command

1. Configure flexible read AHB buffer size in BUFxIND

2. Typically, BUF0IND=BUF1IND=BUF2IND = 0, which means the size of buffer0, buffer1, and

buffer2 is 0. The buffer3 is 1024 bytes.

3. Configure for any read access routed to buffer0 ~ buffer3 in BUFxCR

4. Optionally, buffer3 may be configured as an “all master” buffer by writing 1 to BUF3CR[ALLMST]

5. Set the amount of data to be fetched from the flash memory on every missed access in

BUFxCR[ADATSZ] field

6. Configure the correct sequence ID in the BFGEBCR[SEQID] field

7. Choose a start address for reading in the memory mapped area

8. Read data from the memory mapped area directly

3.3.9. Write the external flash device

The steps to generate a write sequence via peripheral bus is shown in the following figure.

QuadSPI configuration

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

18 NXP Semiconductors

Figure 18. Write the external flash

1. Write 1 to clear TX buffer in MCR[LCR_TXF] field

2. Write Enable

a) Send the Write Enable(WREN) command to external flash memory to set Write Enable

Latch(WEL) bit in its status register

3. Write the address that needs to be programmed in SFAR

4. Write the program data into TBDR

5. Write the length of data to be written in IPCR[IDASZ], write the IPCR[SEQID] to trigger the

program sequence

6. Check SR[BUSY] to wait for the module is idle, and check FR[TFF] to wait for the IP command

transaction finished

7. Wait to write finished

a) Wait the Write In Progress(WIP) bit become 0

NOTE

AHB write is supported on S32G but with restrictions, mainly AHB writes

use case is for Hyperram, which is not included in this document.

3.3.10. Sector erase

The steps to generate a sector erase sequence via peripheral bus is shown in the following figure.

QuadSPI Boot

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

NXP Semiconductors 19

Figure 19. Sector erase

1. Write Enable

a) Send the Write Enable(WREN) command to external flash memory to set Write Enable

Latch(WEL) bit in its status register

2. Write the start address that needs to be erased in SFAR

3. Write the length of data to be erased in IPCR[IDASZ], write the IPCR[SEQID] to trigger the sector

erase sequence

4. Check SR[BUSY] to wait for the module is idle, and check FR[TFF] to wait for the IP command

transaction finished

5. Wait to write finished

a) Wait the Write In Progress(WIP) bit become 0

4. QuadSPI Boot

When choosing boot from an external NOR flash device, BootROM will perform QuadSPI controller

configuration. For different flash device types, BootROM adopts different configuration methods.

4.1. BootROM supported QuadSPI flashes

For Non-Hyper flash, like Quad and Octal flash devices that support with 1-bit mode, BootROM will set

QuadSPI controller in 1-bit SDR mode. For those devices, BootROM can perform QuadSPI controller

configuration in two phases:

QuadSPI Boot

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

20 NXP Semiconductors

Initial configuration phase: The initial configuration is used to read the reconfiguration data from the

address 0x200. BootROM sets 40 MHz (For S32G3 it is set as 30 MHz) in the 1-bit mode for Quad and

Octal flash memories at this phase. If the reconfiguration data is not present, BootROM firmware

continues the booting process with the initial QuadSPI configuration.

Final Configuration phase: BootROM reconfigures the QuadSPI controller based on details provided

in the QuadSPI reconfiguration data, and prepare the clock source per required frequency in

reconfiguration data. It thens, configure the external Flash device for the intended mode of operation,

like SPI mode to OPI mode.

BootROM supports only reading via an AHB interface, it does not support any write operations to

QuadSPI flash memory. Some details configurations can be passed via RCON/Fuses, when booting

from QuadSPI. After reset, the index 0 of the LUT[0..4] is programmed with a basic read sequence.

The flash devices (Single, Dual, Quad, or Octal), can start in 1-bit SDR mode, and the initial read

command should be 0x03. Typically the read sequence of flash devices is shown in the following table:

Table 2. Non-Hyper-flash initial read sequence

Instruction Pad Operand Comment

CMD 0x00 0x03 Read data byte command on one pad

ADDR 0x00 0x18 24 address bits to be sent on one pad

READ 0x00 0x08 Read 64 bits

JMP_ON_CS 0x00 0x0 Jump to instruction 0 (CMD)

For Hyper flash devices, BootROM sets QuadSPI controller in 8-bit mode. And it should support the

initial read command shown in the following table:

Table 3. Hyper-flash initial read sequence

Instruction Pad Operand Comment

CMD_DDR 0x03 0xA0 Read data byte command

ADDR_DDR 0x03 0x18 3 Bytes address

CADDR_DDR 0x03 0x10 2 Bytes column address

DUMMY 0x03 0x0F 16 dummy cycles

READ_DDR 0x03 0x40 Read 0x40 bytes data

STOP 0x00 0x00 Stop

QuadSPI Boot

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

NXP Semiconductors 21

4.2. The reconfiguration parameter

For better performance, you may need to reconfigure flash memory using the reconfiguration

parameters, after the initial configuration phase is over. BootROM supports a list of 10 commands

(CMDs) to complete it. Each of these commands and associated data are encoded in 12 bytes. The

structure of the reconfiguration parameter is shown in the following figure..

Figure 20. The structure of the reconfiguration parameter

The reconstruction parameters includes the following three parts:

1. The first 17 32-bit words of the data are fields defining configuration register values, that the

BootROM firmware uses to configure the QuadSPI controller

2. The LUTs as part of the reconfiguration data must contain at least one read sequence

QuadSPI Boot

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

22 NXP Semiconductors

3. The commands part: each of these commands and associated data are encoded in 3 words (12

bytes):

a) Word 0(bytes 0-3): Command configuration

b) Word 1(bytes 4-7): Flash configuration/Status Register address

c) Word 2(bytes 11-8): Data to be sent to flash

The NXP provided reconfiguration images can be found at the below path.

C:\NXP\S32DS.3.4\eclipse\mcu_data\processors\S32G274A_Rev2\PlatformSDK_S32XX_2021_05\qua

dspi\default_boot_images

Figure 21. NXP provided reconfiguration images

4.2.1. Generate reconfiguration image using S32 config tool

The reconfiguration image can be generated from the S32 config tool. After installing the S32DS, and

S32G related plugins, you can open the QuadSPI reconfiguration image interface, which is shown in the

following figure.

Figure 22. Generate reconfiguration image using S32 config tool

1. The flash port connection: QuadSPI module has two flash memory port. BootROM supports

booting from both port A and port B.

Flash SDK usage

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

NXP Semiconductors 23

2. Enable the DLL auto update mode.

3. Configure the serial flash clock frequency to 200 MHz.

4. Reconfigure the QuadSPI controller register value match with OPI-DTR mode.

5. Configure the OPI-DTR read sequence into LUTs

6. The flash write data, aim to switch flash device from SPI mode to DTR mode.

7. Export the reconfiguration parameter image.

4.2.2. Reconfiguration parameters analysis

The following figure shows the content of the QuadSPI reconfiguration parameters, that are exported

from the S32 config tool.

The first four bytes (0x5a5a5a5a)represent the header of the reconfiguration parameters. The next 16

32-bit words of data represent the register values that the QSPI module needs to be reconfigured. Then

there is the OPI-DTR read sequence which should be programmed into the LUTs and finally is the

command part, the main purpose is to switch the external flash from single-wire SPI mode to 8-wire OPI

mode.

Figure 23. Reconfiguration parameters analysis

To improve the performance, the reconfiguration parameters should be programmed in flash memory at

offset 200h.

5. Flash SDK usage

5.1. S32 flash tool

The S32 flash tool programs external flash devices such as QSPI, SD, and EMMC. The S32 flash tool

can support both GUI interface and command-line interface, as shown in the following figure.

Flash SDK usage

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

24 NXP Semiconductors

Figure 24. S32 flash tool – GUI version

Figure 25. S32 flash tool – command-line version

For each external flash device, there is a flash device-specific flash algorithm file, such as EMMC, SD,

QuadSPI devices. For S32G, the supported communication interface between the host (PC) and the

target device (S32G2) are UART and CAN. The most commonly used is the UART interface.

5.2. How does the flash tool work

After the communication interface (like UART0 in S32G) is connected correctly, the flash tool then

sends the target file (like S32G2xxx.bin) to the target device. Let’s take S32G as an example, the target

device is Cortex-M7_0 core. The Cortex-M7_0 core increases the UART speed from 48000 bps (For G3

is 115200 bps) to 115200*8 bps to load the algorithm file. The flash algorithm file is downloaded by

S32 Flash Tool to the target device SRAM, where it will be executed by the target device (Cortex-M7_0

core). The S32 Flash Tool then sends commands to the flash algorithm along with the image to be

programmed to the external device. The flash algorithm performs the programming of the image to the

external flash device.

Flash SDK usage

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

NXP Semiconductors 25

Figure 26. S32 flash tool workflow

The Flash SDK provides the capability to produce new flash algorithm files, which can be uploaded to

the target device by the S32 Flash Tool and then used to program images to the associated external flash

device. This example project, as provided, will build and output a binary file similar to the

MX25UM51245G.bin file, which includes in the S32 Flash Tool. The example project is designed to

build for Arm® Cortex-M7_0 core.

5.3. Flash SDK usage

5.3.1. How to obtain the flash SDK

The Flash SDK is provided in the form of the S32 Design Studio for an S32 Platform project. After

installing S32 Design Studio the Flash SDK project can be found at the following path:

C:\NXP\S32DS.3.4\S32DS\tools\S32FlashTool\FlashSDK_Ext

For any help refer to the document on how to import, modify, and build the Flash SDK project:

C:\NXP\S32DS.3.4\S32DS\help\resources\howto\HOWTO_Use_FlashSDK_to_add_support_for_Quad

SPI_flash_memory_devices_for_S32_Flash_Tool.pdf

Flash SDK usage

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

26 NXP Semiconductors

Figure 27. Flash SDK project

Figure 28. The help document for Flash SDK

5.3.2. The structure of flash SDK

The Flash SDK project is intended to simplify the creation of a new algorithm. It includes generic

implementation of basic IO operations such as read/write/erase.

Flash SDK usage

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

NXP Semiconductors 27

Figure 29. The structure of flash SDK

The most important here is the FlashSDK_Ext/Algo/Generic directory containing the implementation of

flash driver functionality. To implement your algorithm, it should be enough to change source files in

FlashSDK_Ext/Algo/Generic.

The entrance of the Flash SDK is the FA_Struct structure. Once the algorithm file is loaded, the FA_Init

function will be called to initialize the QPSI controller. S32G calls the FA_ExeCmd function to execute

the read/write/erase command received from the host.

5.3.3. How to create a new flash algorithm by flash SDK

The following steps shows how to take command from the host to call different functions.

Flash SDK usage

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

28 NXP Semiconductors

Figure 30. Create a new flash algorithm

1. Initial the flash parameter's structure, including the supported command of the specific external

flash device.

2. Initial the QuadSPI controller according to the specific flash chip protocol and capacity.

3. Set up LUT according to the requirement of the external flash device.

4. Modify the algorithm implementation of specific flash chip operations (such as reading, writing,

and erasing).

Figure 31. Create a new flash algorithm

Flash Driver configuration method – EB tresos

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

NXP Semiconductors 29

6. Flash Driver configuration method – EB tresos

6.1. The FLS Driver

The flash driver provides services for reading, writing, and erasing flash memory. A configuration

interface for external flash setting/resetting external flash memory is connected via the microcontroller’s

data/address buses (memory-mapped access). The flash drive then uses the handlers/drivers for those

buses to access the external flash memory device.

Figure 32. The FLS driver

6.2. The FLS example from RTD 2.0.0

The FLS driver of RTD 2.0.0 configures the QuadSPI controller and the external flash to implement the

flash operation. The configuration includes the following three parts:

1. FLS Controller: Container for the configuration of the available QSPI controllers. It configures the

S32G QSPI controller to make it work with a specific mode

2. FLS Memory: Container for the configuration of the available external flash memory hardware

units. These configurations are used for the communication mode with the external flash chip. In

this example. The extern flash chip is MX25UW51245G

3. FLS Sector: Configuration description of a flushable sector.

Flash Driver configuration method – EB tresos

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

30 NXP Semiconductors

Figure 33. The FLS example from RTD2.0.0

The FLS driver of RTD 2.0.0 configures the QuadSPI controller and the external flash to implement the

flash operation. The example FLS driver initializes the external flash through three phases.

1. The BootROM of the QuadSPI boot can configure the external flash to achieve the high-speed

communication with the OPI mode via the QuadSPI parameter of IVT.

2. The QuadSPI driver initializes the external flash via the rest command of the external flash. The

external flash turns the default state that is the SPI mode. To configure the external flash, the

QuadSPI controller is set to the corresponding mode

3. The Fls driver turns the OPI mode of the external flash and QuadSPI controller again to increase the

QSPI performance.

Figure 34. Initializes the external flash via FLS driver

The FLS example has two types of configurations for the QSPI controller to fit the external flash

MX25UW51245G.

1. ControllerCfg_0 shows the configuration for the SPI mode of the external flash.

2. ControllerCfg_1 shows the configuration of the OPI mode of the external flash.

Flash Driver configuration method – EB tresos

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

NXP Semiconductors 31

Figure 35. The configurations of FLS driver

NOTE

The read command as an example shows the SPI and OPI mode. For more

information refer to the MX25UW51245G reference manual.

6.2.1. FLS controller configuration

6.2.1.1. FLS controller

Figure 36. FLS controller 1/3

Flash Driver configuration method – EB tresos

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

32 NXP Semiconductors

1. The hardware unit read mode:

o QSPI_IP_DATA_RATE_SDR (single data rate) which samples incoming data on a

single edge.

o QSPI_IP_DATA_RATE_DDR (double data rate) which samples incoming data on both

edges.

2. Size of flash device connected to the side of the controller. Set to 0 if no flash device is

connected. The MX25UW51245G support a 512 Mb memory size.

3. Enable CK2 output 90-degree phase shifted clock for flash. It also enables the clock on

differential CKN pad of Flash, MX25UW51245G does not support differential CKN.

4. DQS clock for sampling read data at Flash QuadSPI port:

o SPI_IP_READ_MODE_INTERNAL_DQS

o QSPI_IP_READ_MODE_LOOPBACK

o QSPI_IP_READ_MODE_LOOPBACK_DQS

o QSPI_IP_READ_MODE_EXTERNAL_DQS

5. Idle Signal Drive. This bit determines the logic level output of the QuadSPI module is driven to

in the inactive state.

Figure 37. FLS controller 2/3

6. DQS Latency Enable. It is used to support external devices which add latency cycles in the DQS

signal. Remarkably DQS Latency is applicable only for DQS sampling mode,

FLS_EXTERNAL_DQS.

7. TDH: Serial flash data in hold time.

o QSPI_IP_FLASH_DATA_ALIGN_REFCLK = Data aligned with the pose of the

Internal reference clock of QuadSPI.

o QSPI_IP_FLASH_DATA_ALIGN_2X_REFCLK = Data aligned with 2x serial flash

half clock.

8. TCSH and TCSS

Flash Driver configuration method – EB tresos

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

NXP Semiconductors 33

o TCSH: Serial flash CS hold time in terms of serial flash clock cycles. A bigger value will

release the CS signal later after the transaction ends. The actual delay between chip select

and clock is defined as, TCSH = 1 SCK CLK if N= 0/1 else, N SCK CLK if N>1, where

N is the setting of TCSH

o TCSS: Serial flash CS setup time in terms of serial flash clock cycles. A bigger value will

pull the CS signal earlier before the transaction starts. The actual delay between chip

select and clock is defined as, TCSS = 0.5 SCK CLK if N= 0/1 else, N+0.5 SCK CLK if

N>1, where N is the setting of TCSS.

9. Page program boundary

o Flash specific Page Program boundary size should be programmed here during format.

The DLL is a general-purpose, dynamically adaptive clock delay module. It provides the

ability to select a quantized delay (in fractions of the clock period) regardless of on-chip

variations such as process, voltage, and temperature (PVT). The DLL is suitable for

applications where accurate delay adjustment is required, such as in case of DDR

interfaces.

Figure 38. FLS controller 3/3

10. Choose the mode of DLL feature for the flash interface.

11. Frequency enables for flash. These are 60-133 MHz (low freq) and 133-200 MHz (high freq)

o Disable - Selects delay-chain for low frequency of operation.

o Enable - Selects delay-chain for high frequency of operation.

12. For the parameters of DLL refer to the device reference manual.

6.2.1.2. FLS AHB buffer

The size of each of these buffers is configurable with the minimum size being 0 bytes and maximum

size being the size of the complete buffer instantiated (1024 bytes).

Flash Driver configuration method – EB tresos

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

34 NXP Semiconductors

If an instance is not present, the corresponding AHB buffer will be configured with size 0.The size of

the AHB_BUFFER_3 instance will be configured to at least the selected size, or more, up until the

maximum value is reached.

Figure 39. FLS AHB buffer

1. The ID of the AHB master associated with this buffer. Any AHB access with this master port

number is routed to this buffer. It must be ensured that the master IDs associated with all buffers

must be different.

2. The size allocated to this AHB Buffer instance. The minimum size is 8 bytes, the maximum size

is the entire AHB Buffer.

3. When set, buffer3 acts as an all-master buffer. Any AHB access with a master port number not

matching with the master ID of buffer0 or buffer1 or buffer2 is routed to buffer3. When set, the

Master ID parameter for this buffer is ignored.

6.2.2. FLS memory configuration

To get the parameters for configuring the external flash refer to the MX25UW51245G reference manual.

• Flash device size is the size in bytes of this flash device. The size of the external flash

MX25UW51245G is 512 Mb.

• Flash device page size is the maximum amount of data that the flash device can write in a single

write operation. For example, The Page Program (PP/PP3B/PP4B) instruction of MX25UW51245G

programs only the last 256 data bytes sent to the device. The Flash device page size is 256.

Flash Driver configuration method – EB tresos

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

NXP Semiconductors 35

For information on Read LUT index and Write LUT index refer to the Fls LUT. This container is for

the configuration of the Look Up Table holding all the Instruction/Operands sequences.

Figure 40. FLS memory configuration

The instruction operand pair of the FlsLut Read_dopi refer to the MX25UW51245G reference manual

Chapter 8 COMMAND SET, it shows all operation command. Follow the below steps to set the

instruction operand pair.

1. Create the command instruction and the operand refer to the READ command directly. The

operand is 0xee and the 0x13

2. Create the address instruction and the operand refer to the READ command, the address byte is

32 bit. The operand is 0x20.

3. Create the dummy instruction and the operand refer to the QSPI clock and the reference manual

of MX25UW51245G, the QSPI clock is 200 MHz. The operand is 0x14.

4. Create the read instruction and the operand is the word unit that is 0x10

Figure 41. FLS Read_dopi

Flash Driver configuration method – EB tresos

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

36 NXP Semiconductors

6.2.2.1. Read ID operation

During the initialization of the external flash driver, the FLS module checks the hardware ID of the

external flash device against the corresponding published parameter. If a hardware ID mismatch occurs,

the FLS module would report the error code.

For more information on the Read Device/Manufacturer ID command refer to the Read Identification

command of MX25UW51245G reference manual.

Figure 42. Read ID

Configured value of Fls Qspi Device Id = 0x3A81C2, it means

• Memory density: 0x3A

• Memory type: 0x81

• Manufacturer ID: 0xC2

For more information refer to MX25UW51245G reference manual.

Figure 43. ID Definitions

The configured READ_ID LUT sequence schedules a read id command (ex: RDID 0x9F) with a reading

length of 3 bytes.

6.2.2.2. Set container for erase command

Erase command refers to the Sector Erase instruction of MX25UW51245G reference manual.

Flash Driver configuration method – EB tresos

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

NXP Semiconductors 37

Figure 44. Set container for erase command

The size in bytes of the erased area is 2 ^ size; e.g. 0x0C means 4 Kbytes.

6.2.2.3. Set container for status register

The WIP bit of the status registers MX25UW51245G indicates whether the device is busy in

program/erase/write progress. And the WEL bit needs to be set to “1” before the device can accept the

program and erase instructions

Status register settings container for settings related to the status register of the flash device:

1. The instruction operand pair of the status register refer to the chapter 8 COMMAND SET of the

reference manual of MX25UW51245G

2. The parameter of the status of referring to the status register of the MX25UW51245G reference

manual. For example, the size of the status register is 8 bit, the size in bytes of the status register

is 1.

Flash Driver configuration method – EB tresos

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

38 NXP Semiconductors

Figure 45. Set container for status register

6.2.2.4. Set container for switch to OPI mode

The MX25UW51245G product provides both Volatile and Non-Volatile configuration registers to set

the device operation condition in CR2 (Configuration Register 2). The Volatile configuration register

bits to temporarily change the device operation. Volatile-CR2 bits can be set to change the setting

originally set by NV-CR2 bits. For example, changing the operation mode of flash from single-wire SPI

mode to OPI mode.

Figure 46. Set container for switch to OPI mode

To clear the volatile-CR2 setting, users can initiate a power-on action or reset cycle, and the device

returns to the default status set by NV-CR2 bits. Refer to Set container for reset command for more

details about the reset cycle.

Flash Driver configuration method – EB tresos

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

NXP Semiconductors 39

In this example, the following configurations make the QuadSPI controller and external flash switch to

the OPI-DTR mode:

• write_cr2_dopi: It makes the external flash device switch to the OPI mode

• ext_dqs: It makes the QSPI controller of S32G switch to the ControllerCfg_1 which is the OPU

mode.

Figure 47. Init configuration

Figure 48. Initial device configuration

1. The following can be one of the operation type:

o QSPI_IP_OP_TYPE_CMD - Simple command

o QSPI_IP_OP_TYPE_WRITE_REG - Write value in external flash register

o QSPI_IP_OP_TYPE_RMW_REG - RMW command on external flash register

QSPI_IP_OP_TYPE_READ_REG - Read external flash register until expected value is

read

o QSPI_IP_OP_TYPE_QSPI_CFG - Re-configure QSPI controller

2. This describes the list of operations which must be performed at initialization phase to bring the

memory in the desired operating state, like from SPI to OPI mode.

3. The detail information of CR2 provided to the Fls driver helps to enable the DTR OPI mode.

Flash Driver configuration method – EB tresos

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

40 NXP Semiconductors

6.2.2.5. Set container for the reset command

Container related to software reset command, for resetting the flash device. This reset procedure applies

only at driver initialization. It might be different from the normal reset command, depending on the

initial state of the flash. For example, the mode external flash may be changed from SPI mode to OPI

mode which is modified by the reconfiguration parameter.

The Software Reset operation combines two instructions, Reset-Enable (RSTEN) command following a

Reset (RST) command. It returns the device to standby mode. All the volatile bits and settings will be

cleared then, which makes the device return to the default status as power on.

Figure 49. Reset sequence

Reference to the configuration which will be used for initializing the controller when the flash device is

initialized. This is needed for devices that need to change controller configuration during device

initialization. In this example, after software resetting, the flash device returns to a standby mode which

is the SPI mode. The QSPI re-apply the configuration for the flash device of standby mode.

Figure 50. Configure the reset sequence in FLS driver

6.2.3. FLS controller configuration

The FLS driver provides services for reading, writing, and erasing flash memory and it combines

configured flash memory sectors into one linear address space. The FLS module combines all available

flash memory areas into one linear address space. It always start at address 0 and continue without any

gap.

Flash Driver configuration method – EB tresos

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

NXP Semiconductors 41

Figure 51. Flash memory sectors

Fls Sector Start Address for FlsSector_0 will be 0x0000 and Fls Sector Start Address for FlsSector_1

will be 0x1000 (4096). If user want to write FlsSector_1, user need to write to the logical address

0x1000 - 0x1FFF. If user want to erase it, user need to erase sector from address 0x1000 with size

0x1000.

Figure 52. Flash memory sectors in FLS driver

Figure 53. Configure flash memory sectors in FLS driver

QuadSPI debug

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

42 NXP Semiconductors

1. In MX25UW51245G, the ECC algorithm uses a Hamming code that can correct a single bit error

per 16-Byte page. It is recommended that data be programmed in multiples of 16 bytes using the

Page Program command instead of programming a byte or a word at a time using the Program

command. Each group of 16 bytes must fall within the same 16-Byte boundary

2. Page size is the maximum amount of data that the flash device can write in a single write

operation(Maximum 256 bytes in MX25UW51245G)

3. The hardware address of this sector, as needed by the external flash device is applicable only to

external sectors. This value is used to access the hardware sector on the attached device and will

be sent as a parameter of flash commands. It should be completed to meet the requirements of

the external flash memory type and configured operating mode.

7. QuadSPI debug

7.1. Waveform analysis example – waveform decoding(read ID)

After initializing the clock, pins, and registers of the QuadSPI controller, you can use the RDID

instruction shown in the following figure to read the external flash ID in order to determine whether the

specific flash sequence is correct.

Figure 54. Read identification sequence in SPI mode

From the waveform captured by the oscilloscope, you can analyze the waveform after sending the read

ID command with SPI mode. The readout data from the external flash device are 0xC2, 0x81, and 0x3A

which match with the expected ID in the MX25UW51245G flash device datasheet.

QuadSPI debug

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

NXP Semiconductors 43

Figure 55. Waveform decoding – Read ID

7.2. Waveform analysis example – fast read command

According to the MX25UW51245G flash datasheet, the max value of the READ3B command (0x03)

clock frequency is 66 MHz. While the FAST_READ3B (0x0B) can be up to 133 MHz, mainly because

of the addition of the dummy cycle.

Figure 56. AC characteristics

From the FAST_READ sequence shown in the following figure, you can know that after sending the

FAST_READ command 0x0B/0x0C, a proper dummy cycle is needed. Incorrect dummy cycles will

cause error data when using the FAST_READ3B command.

QuadSPI debug

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

44 NXP Semiconductors

Figure 57. Fast read sequence

To test the FAST_READ3B (0x0B) command, write 1024 bytes test data into external flash at the start

address 0x320. The specific data content is shown in the following figure.

Figure 58. The test data

When using the dummy cycles specified in the MX25UW51245G flash datasheet (dummy(8)), the read

data is the same as the test data. The data is: 0x11, 0x22, 0x33...

QuadSPI debug

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

NXP Semiconductors 45

Figure 59. Waveform decoding – fast read with dummy(8)

While the dummy cycle(dummy(9)) used is different from the one specified in the MX25UW51245G

flash datasheet, the read data is different from the test data. The data is: 0x22, 0x44, 0x66...

The specific physical layer data content is shown in the following figure.

Figure 60. Waveform decoding – fast read with dummy(9)

7.3. Some debug tips for QuadSPI

• Please pay attention to the QuadSPI pin configuration, such as whether the differential clock is

required from the external flash device, whether the interrupt pin is in low-level input, etc.

• Ensure clock settings meet the clock restrictions mentioned in the QuadSPI Clock configuration

section.

References

S32G QuadSPI Deep Dive, Rev. 0, 02/2022

46 NXP Semiconductors

• Due to BootROM setting the 500ms timeout restriction when downloading the application image,

downloading a very large image with default settings is not optimal. It is recommended to use the

reconfiguration parameter to increase the flash speed.

• A Lauterbach script can be helpful to read the flash device ID for quick verification, if available.

o The LB script can be obtained from the following location after installing the trace32 debug

tool: C:\T32\demo\arm\flash\s32g274-qspi.cmm

• Use an oscilloscope to check whether the timing of the physical layer meets the requirements of the

specific flash chip datasheet.

8. References

1. S32G Reference Manual

2. S32G Data Sheet

3. AN12808 - QSPI Timing Configuration

https://www.nxp.com/webapp/sps/download/preDownload.jsp?render=true
https://www.nxp.com/webapp/sps/download/preDownload.jsp?render=true
https://www.nxp.com/webapp/sps/download/preDownload.jsp?render=true

Document Number: AN13563
Rev. 0

02/2022

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits based on the

information in this document. NXP reserves the right to make changes without further

notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does NXP assume any liability arising out of

the application or use of any product or circuit, and specifically disclaims any and all

liability, including without limitation consequential or incidental damages. “Typical”

parameters that may be provided in NXP data sheets and/or specifications can and do

vary in different applications, and actual performance may vary over time. All operating

parameters, including “typicals,” must be validated for each customer application by

customer's technical experts. NXP does not convey any license under its patent rights

nor the rights of others. NXP sells products pursuant to standard terms and conditions

of sale, which can be found at the following address:

nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of

their applications and products to reduce the effect of these vulnerabilities on

customer’s applications and products, and NXP accepts no liability for any vulnerability

that is discovered. Customers should implement appropriate design and operating

safeguards to minimize the risks associated with their applications and products.

NXP, NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,

COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,

MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,

MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK,

SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the

Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware,

the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,

PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the

SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack,

CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names

are the property of their respective owners. Arm, AMBA, Arm Powered, Artisan, Cortex,

Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered trademarks of

Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11,

big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON, POP, Sensinode,

Socrates, ULINK and Versatile are trademarks of Arm Limited (or its subsidiaries) in the

EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of

Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the

Power and Power.org logos and related marks are trademarks and service marks

licensed by Power.org.

© 2022 NXP B.V.

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	1. Introduction
	2. QuadSPI overview
	3. QuadSPI configuration
	3.1. Pin configuration
	3.1.1. External signals
	3.1.2. A pitfall for interrupt pin (PF_14)

	3.2. Clock configuration
	3.2.1. Serial flash clock domain
	3.2.2. Host clock domain
	3.2.3. QuadSPI clock limitation

	3.3. Register configuration
	3.3.1. Flash memory address
	3.3.1.1. Serial flash memory top address
	3.3.1.2. Serial flash device address

	3.3.2. Supported DQS sampling method
	3.3.3. DLL and DQS delay chain
	3.3.4. Data input hold requirement of flash memory
	3.3.5. Look Up Table(LUT)
	3.3.5.1. Example to configure the LUT

	3.3.6. Peripheral bus access
	3.3.7. AHB bus access
	3.3.8. Read the external flash device
	3.3.8.1. Read – IP command
	3.3.8.2. Read – AHB command

	3.3.9. Write the external flash device
	3.3.10. Sector erase

	4. QuadSPI Boot
	4.1. BootROM supported QuadSPI flashes
	4.2. The reconfiguration parameter
	4.2.1. Generate reconfiguration image using S32 config tool
	4.2.2. Reconfiguration parameters analysis

	5. Flash SDK usage
	5.1. S32 flash tool
	5.2. How does the flash tool work
	5.3. Flash SDK usage
	5.3.1. How to obtain the flash SDK
	5.3.2. The structure of flash SDK
	5.3.3. How to create a new flash algorithm by flash SDK

	6. Flash Driver configuration method – EB tresos
	6.1. The FLS Driver
	6.2. The FLS example from RTD 2.0.0
	6.2.1. FLS controller configuration
	6.2.1.1. FLS controller
	6.2.1.2. FLS AHB buffer

	6.2.2. FLS memory configuration
	6.2.2.1. Read ID operation
	6.2.2.2. Set container for erase command
	6.2.2.3. Set container for status register
	6.2.2.4. Set container for switch to OPI mode
	6.2.2.5. Set container for the reset command

	6.2.3. FLS controller configuration

	7. QuadSPI debug
	7.1. Waveform analysis example – waveform decoding(read ID)
	7.2. Waveform analysis example – fast read command
	7.3. Some debug tips for QuadSPI

	8. References

