
1 Introduction
The MPC57xx family is the first family of devices that include
a new bus for communicating between two devices over a
high speed (320 Mb/s) serial interface called Zipwire. It is
implemented using a Serial Inter-Processor Interface (SIPI)
over an LVDS1 Fast Asynchronous Serial Transmission
Interface (LFAST). The SIPI module controls the higher level
protocol of the interface, and the LFAST controls the physical
interface.

NOTE
Some devices support two separate
interfaces that are similarly based on the
LFAST and SIPI modules. The first,
discussed in this application note, is the
Zipwire interface that consists of the SIPI
and LFAST modules and is used for
interprocessor communication. Some
devices implement a second separate
interface that can be used as a high-speed
debug interface. This debug Zipwire
interface consists of the LFAST, a reduced
SIPI module that has a very limited
functionality, and a JTAG Master interface
module (JTAGM) that allows access of the
JTAG debug interface through the LFAST
interface.

1. LVDS is Low Voltage Differential Signalling

Freescale Semiconductor Document Number: AN5134

Application Note Rev. 0, May 2015

Introduction to the Zipwire
Interface
Inter-Processor Communication with SIPI/LFAST on
the MPC57xx and S32Vxxx families

by: Randy Dees, Hugo Osornio, Steven Becerra, and Ray Marshall

© 2015 Freescale Semiconductor, Inc.

Contents

1 Introduction............................... 1

2 Zipwire Interface overview.............2

2.1 Zipwire SIPI LFAST software
model...4

2.2 Typical Zipwire example
overview..................................... 5

3 Zipwire examples........................6

3.1 Function file locations............. 6

3.2 Zipwire demo overview........... 7

3.3 LFAST clock settings.............12

3.4 Zipwire pins... 13

3.5 Example Configuration........... 14

4 LFAST configuration.................... 15

5 Zipwire hardware and layout.............24

A Zipwire driver............................25

A.1 Overview......................... 26

A.2 About this Appendix................26

A.3 Zipwire Driver API.................26

B Zipwire connector.......................35

C References..............................37

D Revision history.......................... 37

https://www.nxp.com/products/processors-and-microcontrollers/power-architecture/mpc5xxx-microcontrollers/ultra-reliable-mpc57xx-mcus:MPC57XX?utm_medium=AN-2021

Zipwire uses a low-speed reference clock that is shared between the clients and uses a single pair of LVDS signals for data
transmission and a second pair for reception. The normal communication mode for the Zipwire is 320 Mb/s, however, it starts
up at a lower speed until a basic connection is established between the devices.

On the current Freescale microcontrollers (MCU) that support the Zipwire interface, if two MCUs are connected, either MCU
can be defined as the master and the other defined as the slave device. This may also depend on the clock generation
requirements for the devices.

• The master device is defined as the device that "owns" the link. It acts as the initiator for all link management
commands, such as changing the interface speed, sending ping commands, and recovering from errors. The master
device receives the reference clock from the slave device.

• The slave device generates the reference clock and provides it to the master. In addition, the slave device responds to
all link management commands from the master device.

The following table shows the Freescale devices that implement the Zipwire interface for interprocessor communication. It
includes both Power Architecture® based devices and devices based on ARM® cores.

Table 1. Devices that support the Zipwire interprocessor communication interface

Device Core type

MPC574xP Power Architecture

MPC574xR Power Architecture

MPC577xK Power Architecture

MPC577xC Power Architecture

MPC5777M Power Architecture

S32V23x ARM

The Zipwire interface is compatible with devices available from ST Microelectronics and the High Speed Serial Interface
(HSSI) from Infineon Technologies AG.

The Zipwire interface could also be used to connect an MCU with an external smart peripheral.

This application note provides an overview of the Zipwire Interprocessor communication interface, including the hardware
interface, the recommended software API2, and an example of a typical use to transfer information between two devices.

2 Zipwire Interface overview
Some members of the MPC57xx family implement a Zipwire Interface as an Interprocessor Communication interface.
Zipwire is a fully operational and layered protocol to exchange data between two devices. Features of the Zipwire interface
include:

• Point to point communication
• Simple high speed, full duplex, flexible interface
• Low pin count (5)
• Timeout protection
• Fixed priority
• Cyclic redundancy check for data integrity
• Pipe-lined, multi-channel architecture for overlapping requests (up to two outstanding requests by the initiator)
• Streaming mode
• Multiple loopback modes to check the physical interface
• Automatic ping response generation when in slave mode
• Detects unsupported channel numbers and unsupported payload sizes

2. Application Programming Interface

Zipwire Interface overview

Introduction to the Zipwire Interface, Rev. 0, May 2015

2 Freescale Semiconductor, Inc.

The actual physical layer is implemented with the LFAST physical communication interface. As implied in the name of the
interface, the LFAST physical layer is an asynchronous fast serial interface. The protocol is based on a frame format that
includes synchronization information at the beginning of the frame. Data within the frame is synchronous.

The application layer of Zipwire is implemented in the SIPI. The application layer runs on top of the LFAST physical
communication interface and has its own protocol. The main purpose of the SIPI is to provide the framework to exchange
information and provides the link between memory or processes on one MCU through the LFAST physical communication
interface to another MCU or a smart peripheral device. SIPI also adds error detection features such as CRC, acknowledge,
and timeout. (The LFAST protocol does not include any error detection/correction scheme by itself). The SIPI layer supports
multiple channels and some transfers can be overlapped.

In summary, SIPI and LFAST offer the means to exchange information between processors at rates up to 320 Mb/s. The
following figure shows an overview of a typical Zipwire implementation showing the memory interface through the SIPI and
LFAST modules to the physical drivers and receivers.

LFAST PHY

TX

RX

REFCLK

SIPI_TXP

SIPI_TXN

SIPI_RXP

SIPI_RXN

Shared
Memory

 LFAST Frame

SIPI

 Control, status, and configuration registers

 SIPI FrameDMA Interface when SIPI initiator

XBAR Interface when SIPI target

Figure 1. Zipwire overview

The figure below shows the frame format of the LFAST encapsulated SIPI frames/messages. A frame starts with 16 bits for
synchronization (0b1010_1000_0100_1011 [0xA84B]) followed by the LFAST header. The payload of the LFAST frame
includes the SIPI header and the actual payload (the contents depend on the payload type), followed by a CRC of the SIPI
information. The frame ends with a single '1' stop bit. The synchronization pattern allows the receiver to adjust when the bits
will be sampled within the remaining bits in the frame for optimum performance. The receiver uses a multiphase clock to
determine which phase of its internal clock to use based on decoding the LFAST sync pattern.

Zipwire Interface overview

Introduction to the Zipwire Interface, Rev. 0, May 2015

Freescale Semiconductor, Inc. 3

LFAST Stop Bit

LFAST Sync LFAST Header SIPI header CRC16 Stop bitAddress

SIPI Header

Register Read Request

LFAST Sync LFAST Header Stop bitSIPI header CRC16DataRegister Read Response

LFAST Sync LFAST Header SIPI header CRC16 Stop bitAddress Data

32 Bits

Register Write Request

LFAST Sync LFAST Header SIPI header CRC16 Stop bit

16 Bits

Trigger transfer,
ID transfer,

Write Acknowledge,
Streaming Write

Acknowledge

LFAST Sync Stop bitStreaming Write
Request

SIPI header CRC16Data

256 bits (32 Bytes)

SIPI CRCSIPI Payload

LFAST Header

8 Bits16 Bits

16 Bits8 Bits16 Bits

16 Bits8 Bits16 Bits

16 Bits

16 Bits8 Bits16 Bits

1 Bit16 Bits

16 Bits 1 Bit

16 Bits 1 Bit32 Bits

32 Bits 16 Bits 1 Bit

32 Bits 16 Bits 1 Bit

LFAST Header LFAST Payload

8 Bits16 Bits

Figure 2. Zipwire message formats

See the Zipwire, SIPI, and LFAST chapters of the device reference manual for more information about the specific values of
the LFAST Header, SIPI header, and explanation of the different types of messages.

2.1 Zipwire SIPI LFAST software model
Software should interact with the Zipwire hardware through the standard API. The Zipwire API conforms to the standard
Open Systems Interconnection (OSI) model. The following table shows the mapping of the software and hardware to the OSI
model. The Zipwire LFAST module handles the basic media layer (packet, frame, and bit formatting), with the SIPI module
handling most of the Host layers, except for the network process to application layer (transport, session, and presentation
layers). Using the Zipwire API allows the user software to interface in a standard manner to the lower levels of the model.

Table 2. Zipwire SIPI LFAST software model

OSI Model Protocol Name

Layer Data Unit Layer Function

Host Layers Data 7. Application Network process to application SIPI
Software

Zipwire

6. Presentation Data representation, encryption and
decryption, convert machine dependent
data to machine independent data

SIPI
Hardware

Table continues on the next page...

Zipwire Interface overview

Introduction to the Zipwire Interface, Rev. 0, May 2015

4 Freescale Semiconductor, Inc.

Table 2. Zipwire SIPI LFAST software model (continued)

OSI Model Protocol Name

Layer Data Unit Layer Function

5. Session Inter-host communication, managing
sessions between applications

Segment 4. Transport End-to-end connections, reliability and flow
control

Media Layers Packet 3. Network Path determination and logical addressing LFAST

Frame 2. Data Link Physical addressing

Bit 1. Physical Media, signal and binary transmission

2.2 Typical Zipwire example overview
The simplest example of a Zipwire interface is two MPC5777M microcontrollers communicating to each other (See the
figure below). Device 1 wants to write a memory location of Device 2.

1. The SIPI module, acting as the initiator, of the first MCU will use the DMA to acquire data to be sent from memory.
This is done via software initialization.

2. Once the data registers are full, the initiator SIPI will automatically construct a frame indicating the operation to
perform, the address to be written, the data to write, and a CRC. This is handled by the SIPI module in hardware.

3. This SIPI frame will then be sent by the hardware o the LFAST module and the module will embed the SIPI frame
within a greater LFAST compliant frame that will be sent through the physical interface.

4. The LFAST frame will be received by the second MCU, acting as a target node. The LFAST will then decompose the
frame back into a SIPI understandable frame and send it to the SIPI. This is handled in hardware.

5. The SIPI target will verify that the message is correct and use the XBAR master interface to modify the data at the
requested address. Once completed, the SIPI target will send back a write acknowledge message to the initiator. This is
all handled by the Zipwire hardware.

6. Once the acknowledge has been received by the initiator, the DMA on the first device can start another operation until
the desired amount of data has been written to the target MCU.

DEVICE 1

Shared
Memory

DEVICE 2

Shared
Memory

LFAST LFASTSIPI SIPI

Figure 3. Typical Zipwire application

Zipwire Interface overview

Introduction to the Zipwire Interface, Rev. 0, May 2015

Freescale Semiconductor, Inc. 5

3 Zipwire examples
This section describes some basic examples of using the Zipwire driver. Simple functions were written to show the basic
operations of the Zipwire interface, including determining the remote device connected and performing simple operations to
the remote device over the Zipwire link.

Each of the examples is set up as a separate example and each contains both the Master and the Slave software. Each includes
calls to the Zipwire API routines. The Zipwire API is included in this document as an appendix.

3.1 Function file locations
This application note includes a zip file that contains all of the code discussed in this application note. The software was
compiled with the Green Hills Software Multi compiler, version 2014.1.2, but later versions should also work.

The software project included in this application note is divided into two sections. There is the main example code and there
is a separate subdirectory of the code required for the API interface. The following table lists all functions in this example
application note and the file name in which they are implemented. There are three functions that must be modified with MCU
specific information.

Table 3. Example function file locations

File Name Description Function

crt0.s Device low level 'C' code
initialization

—1

LFAST.c Device specific initialization LFAST_Configure(unsigned char master)1

main.c Main example code user_testcase(void)

main(void)

mcu_init_flash.c MCU specific initialization (in
'C')

MC_MODE_INIT(void)1

SIPI.c Example functions used in the
example code that call the
Zipwire API functions

unsigned char sipi_app_note_read(void)

unsigned char sipi_app_note_write(void)

unsigned char sipi_app_note_multiple_read_no_dma(void)

unsigned char sipi_app_note_multiple_write_no_dma(void)

unsigned char sipi_app_note_multiple_write_dma(void)

unsigned char sipi_app_note_stream_write(void)

unsigned char sipi_app_note_ID(void)

unsigned char sipi_app_note_event(void)

1. Values used in this function are device specific

In addition to the example code, there are additional header files that are included in this example project. These are shown in
the following table.

Zipwire examples

Introduction to the Zipwire Interface, Rev. 0, May 2015

6 Freescale Semiconductor, Inc.

Table 4. Zipwire example header files

File Name Description

SIPI_HSSL_Header_v4.h This header file provides all of the prototype functions for the Zipwire driver. This
file can be included in the target software to include the Zipwire API functions.

SIPI_API.h This header file contains all of the necessary definitions for the Zipwire driver
internal use.

The files and functions for the Zipwire API itself, are included in the appendix of this application note. The file
SIPI_HSSL_Header_v4.h, along with the Zipwire API object files should be included in the project to include the Zipwire
API routines.

3.2 Zipwire demo overview

The Zipwire demo program is an example of using the Zipwire driver and is contained in the file main.c. This program
initializes the MCU and then calls the example functions. The flow chart of the demo is shown in Figure 4.

Zipwire examples

Introduction to the Zipwire Interface, Rev. 0, May 2015

Freescale Semiconductor, Inc. 7

Send multiple write requests and verify
data was written correctly

Configure LFAST

Configure SIPI Channel

Send read request and verify the read
values are what is expected

Send write request and verify that data
was written to the address

Send multiple read requests using CPU and
verify the read values are what is expected

Send multiple write requests using DMA support
and verify that data was written correctly

Stream write a series of words and read back
to verify data was streamed correctly

Send ID command and verify the
ID was received

Verify that a trigger event can be
initiated using the SIPI interface

Perform soft reset of SIPI module

user_testcase

MC_MODE_INIT

Figure 4. Zipwire Demo Code Flow Chart

The demo consists of several functions that are called from the demo. These functions are listed in Table 5.

Table 5. Demo function overview

Function Description

sipi_app_note_read Exercises the SIPI_read() and SIPI_read_channel_data functions to send a read
request and verifies that the read values are the expected values.

sipi_app_note_write Exercises the SIPI_write(), SIPI_read() and SIPI_read_channel_data functions to
send a write request and then verify that the address was actually written.

sipi_app_note_ID Exercises the SIPI_ID() and SIPI_read_channel_data functions to send the ID
command and read the CADR to verify that the ID was received.

sipi_app_note_event Exercises SIPI_Trigger() to verify that a trigger event can be initiated using the SIPI
interface.

sipi_app_note_multiple_read_no_dma Exercises SIPI_multiple_read() without using DMA support, each array will be read
using CPU and the read contents will be verified.

Table continues on the next page...

Zipwire examples

Introduction to the Zipwire Interface, Rev. 0, May 2015

8 Freescale Semiconductor, Inc.

Table 5. Demo function overview (continued)

Function Description

sipi_app_note_multiple_write_no_dma Exercises SIPI_multiple_write() and SIPI_multiple_read() to send multiple write
requests, once completed will read the written content to verify that the data was
written correctly.

sipi_app_note_multiple_write_dma Exercises SIPI_multiple_write() using DMA support and SIPI_multiple_read() to
send multiple write requests, once completed will read the written content to verify
that the data was written correctly.

sipi_app_note_stream_write Exercises SIPI_stream_transfer() and SIPI_multiple_read() to stream write a series
of words and then read them back to verify the data.

3.2.1 Function index
The following table shows the functions used in the SIPI application note demo.

Table 6. Quick function reference

Type Name Arguments

void LFAST_Configure unsigned char master

void MC_MODE_INIT void

unsigned char sipi_app_note_ID void

unsigned char sipi_app_note_event void

unsigned char sipi_app_note_multiple_read_no_dma void

unsigned char sipi_app_note_multiple_write_dma void

unsigned char sipi_app_note_multiple_write_no_dma void

unsigned char sipi_app_note_read void

unsigned char sipi_app_note_stream_write void

unsigned char sipi_app_note_write void

void user_testcase void

3.2.2 Function MC_MODE_INIT
This function initializes the MPC5777M processor. It sets up the phase lock loop to set the device operating frequency, the
peripheral clock frequencies, and enables all of the peripheral modules in the different "RUN" modes. It then performs a
mode change to enable the clocks and enable all cores of the device.

The function must be tailored for the target system and environment, including the device crystal frequency.

NOTE
The Zipwire clock is set up in the file LFAST.c.

Prototype: void MC_MODE_INIT(void);

Zipwire examples

Introduction to the Zipwire Interface, Rev. 0, May 2015

Freescale Semiconductor, Inc. 9

3.2.3 Function user_testcase
The user testcase is the actual example code and calls most of the other functions of the Zipwire example code. The flow of
this section is shown in Figure 4.

Prototype: void user_testcase(void);

3.2.4 Function LFAST_Configure
Configures the LFAST as either a Master or a Slave, sets the clocks and bus speeds, and configures the pins to set the LFAST
link.

Prototype: void LFAST_Configure(unsigned char master);

Table 7. LFAST_Configure Arguments

Type Name Direction Description

unsigned char master input defines whether to configure the LFAST node as master or
slave.

3.2.5 Function sipi_app_note_ID
Exercises the SIPI_ID() and SIPI_read_channel_data functions to send the ID command and read the CDR to verify that the
ID was received.

Prototype: unsigned char sipi_app_note_ID(void);

Return:
• 0 = Successfully Set Up
• 2 = Channel Busy
• 3 = Invalid Channel
• 4 = Timeout Error
• 10 = ID Not received properly

3.2.6 Function sipi_app_note_read
Exercises the SIPI_read() and SIPI_read_channel_data() functions to send a read request and verifies that the read values are
the expected values.

Prototype: unsigned char sipi_app_note_read(void);

Return:
• 0 = Successful
• 1 = Invalid Width
• 2 = Channel Busy
• 3 = Invalid Channel
• 4 = Timeout Error
• 10 = Wrong read value

Zipwire examples

Introduction to the Zipwire Interface, Rev. 0, May 2015

10 Freescale Semiconductor, Inc.

3.2.7 Function sipi_app_note_write
Exercises the SIPI_write(), SIPI_read() and SIPI_read_channel_data functions to send a write request and then verify that the
address was actually written.

Prototype: unsigned char sipi_app_note_write(void);

Return:
• 0 = Successfully Set Up
• 1 = Invalid Data Size
• 2 = Channel Busy
• 3 = Invalid Channel
• 4 = Timeout Error / Wrong Acknowledge
• 10 = Wrong Read Value

3.2.8 Function sipi_app_note_multiple_read_no_dma
Exercises SIPI_multiple_read() without using DMA support. Each array will be read using CPU and the read contents will be
verified.

Prototype: unsigned char sipi_app_note_multiple_read_no_dma(void);

Return:
• 0 = Successfully Set Up
• 1 = Incorrect Channel
• 2 = Channel Busy
• 4 = Timeout Error
• 10 = Data not read properly

3.2.9 Function sipi_app_note_multiple_write_no_dma
Exercises SIPI_multiple_write() and SIPI_multiple_read() to send multiple write requests, once completed will read the
written content to verify that the data was written correctly.

Prototype: unsigned char sipi_app_note_multiple_write_no_dma(void);

Return:
• 0 = Successfully Set Up
• 1 = Incorrect Channel
• 2 = Channel Busy
• 4 = Timeout Error
• 10 = Data not read properly

3.2.10 Function sipi_app_note_multiple_write_dma
Exercises SIPI_multiple_write() using DMA support and SIPI_multiple_read() to send multiple write requests. Once
completed, will read the written content to verify that the data was written correctly.

Prototype: unsigned char sipi_app_note_multiple_write_dma(void);

Return:
• 0 = Successfully Set Up
• 1 = Incorrect Channel

Zipwire examples

Introduction to the Zipwire Interface, Rev. 0, May 2015

Freescale Semiconductor, Inc. 11

• 2 = Channel Busy
• 4 = Timeout Error
• 10 = Data not read properly

3.2.11 Function sipi_app_note_stream_write
Exercises SIPI_stream_transfer() and SIPI_multiple_read() to stream write a series of words and then read them back to
verify the data.

Prototype: unsigned char sipi_app_note_stream_write(void);

Return:
• 0 = Successfully Set Up
• 1 = Incorrect Channel
• 2 = Channel Busy
• 4 = Timeout Error
• 10 = Data not read properly

3.2.12 Function sipi_app_note_event
Exercises SIPI_Trigger() to verify that a trigger event can be initiated using the SIPI interface. Target device waits until the
trigger event is received.

Prototype: unsigned char sipi_app_note_event(void);

Return:
• 0 = Successfully Set Up
• 1 = Incorrect Channel
• 2 = Channel Busy

3.3 LFAST clock settings

The LFAST interface requires a reference clock and uses an internal Phase Lock Loop (PLL) to derive the timing used for
transmitting and receiving the LFAST signals. The clock is generated by the Zipwire slave device, and the Zipwire master
device uses the external clock as the reference for its PLL. The possible frequencies are shown in the table below.

Table 8. Zipwire clocking options

Reference clock frequency Low speed operating
frequency

High speed operating
frequency

LFAST PLL multiplier

10 MHz 5 MHz 320 MHz 32

20 MHz 5 MHz 320 MHz 16

Software must enable the clock signal in low speed mode initially. Once a link is established at low speed, the Zipwire
interface can be put into high speed mode.

In the current MCUs, there are three sources for the clock used by the Zipwire interface, the MCU oscillator, the output of the
system phase-lock loop (PLL), or the external LFAST reference clock that is provided by the slave Zipewire device. The
clock frequency is typically 20 MHz. The Zipwire interface contains a dedicated PLL3 that uses the reference clock to
generate the 320 MHz required for operation of the LFST and SIPI modules.

Zipwire examples

Introduction to the Zipwire Interface, Rev. 0, May 2015

12 Freescale Semiconductor, Inc.

3.4 Zipwire pins

The Zipwire interface consists of five signals: a pair of LVDS transmit pins, a pair of receive LVDS pins, and a clock. The
clock is unidirectional and is defined to be an output on the Slave and an input on the Master node. The following table
shows the Zipwire pins.

NOTE
The signal names are named slightly different between the different devices. Both names
indicate the Zipwire signal.

Table 9. Zipwire Signals

Zipwire signal Full Name Direction Description

SIPI_TXN/
LFAST_TXN

SIPI Transmit LVDS Negative
terminal

Output The negative signal of the Zipwire transmit interface.

SIPI_TXP/
LFAST_TXP

SIPI Transmit LVDS Positive terminal Output The positive signal of the Zipwire transmit interface.

SIPI_RXN/
LFAST_RXN

SIPI Receive LVDS Negative terminal Input The negative signal of the Zipwire receive interface.

SIPI_RXP/
LFAST_RXP

SIPI Receive LVDS Positive terminal Input The positive signal of the Zipwire receive interface.

LFAST_REFCL
K/REF_CLK

LFAST interface system clock Input/Output The input or output reference clock for the Zipwire
interface.

Different devices instantiate the Zipwire signals on different pins of the device. The following table shows the pins used for
the Zipwire interface.

Table 10. Zipwire pins

Zipwire pin MPC574xP1 MPC577xC MPC577xK MPC5777M S32V23x

Port Pin MSCR Port
Pin

MSCR Port Pin MSCR Port Pin MSCR Port Pin MSCR

SIPI_TXN PI[5] 133
(SSS=3)

PLLCFG
0

208
(SSS=4)

— 2 — PD[6] 54
(SSS=1)

—3 —

SIPI_TXP PC[12] 44
(SSS=3)

PLLCFG
1

209
(SSS=4)

—2 — PA[14]
(SSS=1)

14
(SSS=1)

—3 —

SIPI_RXN PI[6] 134
(SSS=3)

WKPCF
G

213
(SSS=4)

—2 — PF[13] 93 —4 —

SIPI_RXP PG[7] 103
(SSS=3)

BOOTC
FG0

211
(SSS=4)

—2 — PD[7] 55 —4 —

LFAST_REFCL
K

PI[7] 135
(SSS=1)

PLLCFG
2

210
(SSS=4)

135 PI[7]
(SSS=1)

PF[14] 94
(SSS=1)

PC8
(MODE_
MUX=2)

40/550

1. The Zipwire interface is only available in the 257 MAPBGA package.
2. The transmit and receive pins on this device are dedicated LVDS functions and require no configuration.
3. Function selected by SRC_SOC_GPR3[4]
4. This is a dedicated LVDS signal for the LFAST interface.

3. In devices that include both an Interprocessor communication Zipwire interface and a debug Zipwire interface, the PLL
may be shared between both interfaces.

Zipwire examples

Introduction to the Zipwire Interface, Rev. 0, May 2015

Freescale Semiconductor, Inc. 13

Table 11 describes the values to be programmed into the Multiplexed Signal Configuration register to setup up the Zipwire
pins for the MPC5777M. Other devices in Table 10 may require a different initialization.

Table 11. MPC5777M Multiplexed Signal Configuration register (MSCR)
values

Zipwire
signal

Register
Setting

Direction Bit settings Description

SIPI_TXN 0x0500_0000 Output ODC = 0b101 Output Drive Control is LFAST LVDS

SIPI_TXP 0x0500_0000 Output ODC = 0b101 Output Drive Control is LFAST LVDS

SIPI_RXN 0x0020_0001 Output ILS = 0b10 Input Level Selection is LVDS

SSS = 0x01 Source Signal Source is SIPI_RXN

SIPI_RXP 0x0020_0001 Input ILS = 0b10 Input Level Selection is LVDS

SSS = 0x01 Source Signal Source is SIPI_RXP

LFAST_REFC
LK (Master)

0x0008_0001 Input WPUE = 1 Weak pull up is enabled

SSS = 0x1 Source Signal Source is LFAST_REFCLK

LFAST_REFC
LK (Slave)

0x2280_0000 Output OERC = 0b010 Output Edge Rate is Strong Drive (50 ohm/5
ns)

ODC = 0b010 Output drive control is push-pull

SMC = 0b1 Pin is not disabled in Safe Mode Control

SSS = 0x1 Source Signal Source is LFAST_REFCLK

3.5 Example Configuration

The Zipwire.h file is used to define if the software should configure the Zipwire node as a master or slave interface.
CONFIGURED_AS_MASTER must be set to select either master or slave mode depending on the compile requirements of
the software. To use this example, the example software must be compiled both as a master and as a slave and programed
into two separate MCUs. These MCUs should have the Zipwire interfaces connected to each other, connecting the master's
transmit pins (N and P) to the Slave's receive pins (N and P). The Slave's transmit pins (N and P) must be connected to the
master's receive pins (N and P). The clock pin of the master and slave must also be connected to each other.

NOTE
Depending on the board layout and requriements, a termination resistor may be needed
on the REFCLK signal. See Zipwire hardware and layout.

This example is written to support different implementations of the Zipwire interface, although all current implementations
have the same number of channels. In addition, all current MCU implementations support being set as a master or a slave.

3.5.1 Define CONFIGURED_AS_MASTER
Definition:#define CONFIGURED_AS_MASTER 0

Possible values::
• 0 = Slave
• 1 = Master

Zipwire examples

Introduction to the Zipwire Interface, Rev. 0, May 2015

14 Freescale Semiconductor, Inc.

4 LFAST configuration
The LFAST module allows for many options to be programmed into its configuration registers. However, most of these
options should not be used by customers. This section describes the recommended configuration that should be used for the
LFAST Master interface that is implemented in this example, specifically, in the LFAST_Configure (LFAST.c).

Table 12. LFAST Master mode configuration

Step Description RM Operation Registers1 Bits

0 Initialize
device pins
for the
Zipwire
interface

Set up the Positive and Negative Transmit pins
in the System Integration unit Lite 2 (SIUL2)
Multiplexed Signal Control Registers (MSCR)

See Table 11

Set up the Positive and Negative Receive pins
in the SIUL2 MSCR

1 Set the
LFAST
wakeup
delay and
rate change
delay for the
Line Driver
(LD).

After reset the SLCR and RCDCR are
programmed according to the LVDS
requirements of the device.

LFAST Rate Change
Delay Control Register
(RCDCR)

Data Rate Controller
Count Value (DRCNT) =
0xF

LFAST Wakeup Delay
Control register (SLCR)

High Speed Sleep Mode
Exit Time (HSCNT) =
0x12 (18 cycles)

Low Speed Sleep Mode
Exit Time (LSCNT) = 0x1

Wake Up time for the LD
(HWKCNT) = 0x54

Wake Up time for the LD
(LWKCNT) = 0x2

2 Set the
LFAST
operating
speeds

The PLLCR is programmed with configuration
parameters for the PLL

LFAST PLL Control
Register (PLLCR)

PLL Loop Optimization
(LPCFG) = 3 (2x IBASE
current

Division Factor for the
PLL Reference Clock
(PREDIV) = 0 (Direct
Clock)

Feedback Division factor
for PLL Reference Clock
(FBDIV) = 15

Test mode
programmability
(IPTMODE) = 0b000
Normal functional mode.
Test modes should not
be used by customers.

SW signal to turn off the
PLL (SWPOFF) = 0b0.
The PLL should not be
disabled for normal
operation.

Software signal to turn
on the PLL (SWPON) =

Table continues on the next page...

LFAST configuration

Introduction to the Zipwire Interface, Rev. 0, May 2015

Freescale Semiconductor, Inc. 15

Table 12. LFAST Master mode configuration (continued)

Step Description RM Operation Registers1 Bits

0b0 = Do not turn on the
PLL.

Invert reference clock
edge to the PFD
(REVINV) = 0b0 = The
reference clock should
not be inverted.

PLL Lock Ready Count
Width (PLCLKCW) = 0b0
= 1040 cycles2

Enable Fraction mode in
feedback divider
(FDINEN) = 0b0 - do not
enable

3 Set up the
SIUL2 MSCR
3

Initialize the Zip wire clock pin as an input with
CMOS levels to receive the clock from the Slave

SIUL2 Multiplexed Signal
Control Register
(MSCR)4

Master: MSCR =
0x0038_0001

4 Program the
LVDS
Control
Register

The LCR is programed with configuration
parameters of the LVDS

LCR = 0x0000_502C
(default value)

SWWKLD, SWSLPLD,
SWWKLR, SWSSLPLR,
SWOFFLD, SWONLD,
SWOFFLR, SWONLR =
0b0 - do not put the line
driver or line receiver to
sleep or disabled state

LVDS Line Receiver off
state (LVRXOFF) = 0b0 -
low when the LFAST
Receiver is in shutdown
mode

LVTXOE = 0b1 - output
buffer enabled

TXCMUX = 0b0 - do not
put phase clock on the
transmit pin

LVRFEN = 0b1 - enable
the LVDS reference

LVLPEN = 0b0 - enable
normal mode (not
loopback mode)

LVRXOP = 0b101 -
enable receive
termination and
configure for maximum
data rate

LVTXOP = 0b1 - enable
LFAST mode

LVCKSS = 0b0 - use
normal data mode

LVCKP=0b0 - use the
direct PLL clock

Table continues on the next page...

LFAST configuration

Introduction to the Zipwire Interface, Rev. 0, May 2015

16 Freescale Semiconductor, Inc.

Table 12. LFAST Master mode configuration (continued)

Step Description RM Operation Registers1 Bits

5 Enable
LFAST and
select Master
or Slave
operation.

Write MCR[MSEN] = 1. Then select LFAST
modes by configuring MCR[CTSEN],
MCR[TXSLPEN]and MCR[DATAEN]

Mode Configuration
Register (MCR)

Master: MCR[MSEN] =
0b1

Enable Data Frame Transmission. MCR[DATAEN] = 0b1 -
enable data frame
transmission and
reception

6 Use 20 MHz
clock input
with divide
by 4 for PLL
clock

Select the fraction of sysclk in Low Speed Select
mode

Mode Configuration
Register (MCR)

MCR[LSSEL] = 0b1 -
divide by 4

7 Enable
LFAST
Transmitter
Line Driver
and Line
Receiver

Write MCR[DRFEN] = 1 to enable the LFAST Mode Configuration
Register (MCR)

LFAST Driver/Receiver
Enable (DRFEN) = 0b1 -
Enable

8 Enable the
Transmit and
Receive
circuits

Write MCR[RXEN] = 1 and MCR[TXEN] = 1 to
negate the Line Driver (LD) powerdown, Line
Receiver (LR) disable, and LR powerdown
signals

Mode Configuration
Register (MCR)

LVDS Transmit Enable
(TXEN) = 0b1, LVDS
Receiver Enable (RXEN
= 0b1.

Repeat the following steps (9-16) until the slave acknowledges whether the Ping frame was successfully received or not from
the Slave (failed)

9 Send request
to enable the
slave
Transmit
interface

Write ICR[ICLCPLD] = 31h to enable the Slaves
Tx Interface

ICLC Control Register
(ICR)

ICLC Payload
(ICLCPLD) = 0x31 -
Enable Slave transmitter

10 Initiate a
ICLC frame
request and
set to only
allow ICLC
frames to be
sent

Write ICR[SNDICLC] = 1 and ICR[ICLCSEQ] =
1

ICLC Control Register
(ICR)

ICLC Frame request
(SNDICLC) = 0b1 =
initiate the transfer of an
ICLC frame

ICLC Enabled
(ICLCSEQ) = 0b1=
Enable the sending of
only ICLC frames

11 Enable
transmit
arbiter

Write MCR[TXARBD] = 0 Mode Configuration
Register (MCR)

Transmit Arbiter Disable
(TXARBD) = 0x0 =
Enable Tx arbiter and
framer

12 Wait for ICLC
frame to be
transmitted

The ICLC transmission is confirmed by verifying
one of the following:

• ICR[SNDICLC] = 0

• TISR[TXICLCF] = 1

ICLC Control Register
(ICR)

ICLC Frame request
(SNDICLC) = 0b0 Frame
transmitted

Transmit Interrupt Status
Register (TISR)

Transmit ICLC Frame
transmitted Interrupt
(TXICLCF) = 0b1

13 Clear
TXICLCF

Write TISR[TXICLCF] = 1 Transmit Interrupt Status
Register (TISR)

Transmit ICLC Frame
transmitted Interrupt
(TXICLCF) = 0b1

Table continues on the next page...

LFAST configuration

Introduction to the Zipwire Interface, Rev. 0, May 2015

Freescale Semiconductor, Inc. 17

Table 12. LFAST Master mode configuration (continued)

Step Description RM Operation Registers1 Bits

14 Request a
ping from the
Slave node

Write ICR[ICLCPLD] = 00h to check the LFAST
slaves status

ICLC Control Register
(ICR)

ICLC Payload
(ICLCPLD) = 0x00 Ping
request from Master to
Slave

15 Send the
ping from
slave request
frame

Write ICR[SNDICLC] = 1 ICLC Control Register
(ICR)

ICLC Frame request
(SNDICLC) = 0b1 =
initiate the transfer of an
ICLC frame

16 Confirm
slave status

The LFAST slave status is confirmed by
occurrence of one of the following:

• LFAST slave is enabled if RIISR[ICPSF] =
1. Proceed to step 14

• LFAST slave is disabled if RIISR[ICPFF] =
1. The LFAST master must wait and
restart from Step 7

Receive Interface
Control Logic Channel
(ICLC) Interrupt Status
Register (RIISR)

Ping Frame Response
successful (ICPSF) =0b1
(Continue initialization)
or Ping Response Failed
(ICPFF) = 0b1 (If fail,
restart loop)

End of Wait for successful Slave communication loop

17 Clear the
Ping Frame
Request
Successful
flag

Clear ICPSF Receive Interface
Control Logic Channel
(ICLC) Interrupt Status
Register (RIISR)

Ping Frame Response
successful (ICPSF) = 1 =
clear the response status

Speed Mode Change

18 Begin
change to
high speed
mode

Write PLLCR[SWPON] = 1 to enable the LFAST
masters PLL

LFAST PLL Control
Register (PLLCR)

Software signal to turn
on the PLL (SWPON) =
0b1

19 Wait for PLL
to relock

Wait for PLL disable signal to be negated and
wait for PLL lock by confirming:

• PLLLSR[PLLDIS] = 0
• then PLLLSR[PLDCR] = 1

LFAST PLL and LVDS
Status Register
(LFAST_PLLLSR)

PLL disable Status
(PLLDIS) = 0 = PLL
disable signal is
negated.

PLL Lock Delay Counter
Ready (PLDCR) = 1 =
PLL Lock delay counter
is decremented to 0

20 Start PLL
frame

Write ICLC start PLL frame, ICR[ICLCPLD] =
02h

ICLC Control Register
(ICR)

ICLC Payload
(ICLCPLD) = 0x02 =
Start PLL in preparation
for High Speed mode

21 Initiate
transfer of
ICLC frame

Write ICR[SNDICLC] = 1 ICLC Control Register
(ICR)

ICLC Frame request
(SNDICLC) = 0b1 =
initiate the transfer of an
ICLC frame

22 Confirm
ICLC
transmission

The ICLC transmission is confirmed by
occurrence of one of the following:

• ICR[SNDICLC] = 0

• TISR[TXICLCF] = 1

ICLC Control Register
(ICR)

ICLC Frame request
(SNDICLC) = 0b0 Frame
transmitted

Transmit Interrupt Status
Register (TISR)

Transmit ICLC Frame
transmitted Interrupt
(TXICLCF) = 0b1

Table continues on the next page...

LFAST configuration

Introduction to the Zipwire Interface, Rev. 0, May 2015

18 Freescale Semiconductor, Inc.

Table 12. LFAST Master mode configuration (continued)

Step Description RM Operation Registers1 Bits

23 Clear
TXICLCF

Write TISR[TXICLCF] = 1 Transmit Interrupt Status
Register (TISR)

Transmit ICLC Frame
transmitted Interrupt
(TXICLCF) = 0b1

24 Change the
LFAST
masters RX
interface
speed

Both of the following operations are performed
to change the LFAST masters Rx interface
speed:

Note: (The slaves Transmit interface speed
mode should be changed first)

• Write ICR[ICLCPLD] = 80h to select Rx
data fast frame

• Write ICR[SNDICLC] = 1

ICLC Control Register
(ICR)

ICLC Payload
(ICLCPLD) = 0x10 =
Select Receive Data
Fast frame

ICLC Frame request
(SNDICLC) = 0b1 =
initiate the transfer of an
ICLC frame

25 Confirm
ICLC
transmission

The ICLC transmission is confirmed by the
occurrence of one of the following:

• ICR[SNDICLC] = 0

• TISR[TXICLCF] = 1

ICLC Control Register
(ICR)

ICLC Frame request
(SNDICLC) = 0b0 Frame
transmitted

Transmit Interrupt Status
Register (TISR)

Transmit ICLC Frame
transmitted Interrupt
(TXICLCF) = 0b1

26 Clear
TXICLCF

Write TISR[TXICLCF] = 1 Transmit Interrupt Status
Register (TISR)

Transmit ICLC Frame
transmitted Interrupt
(TXICLCF) = 0b1

27 Enable
transmit fast
frames

To change LFAST master's Transmit interface
speed both of the following operations are
performed:

Note: (The slaves Rx interface speed should
be changed first.)

• Write ICR[ICLCPLD] = 10h for Tx data fast
frame

• Write ICR[SNDICLC] = 1

ICLC Control Register
(ICR)

ICLC Payload
(ICLCPLD) = 0x10 =
Select Transmit Data
Fast frame

ICLC Frame request
(SNDICLC) = 0b1 =
initiate the transfer of an
ICLC frame

28 Confirm
ICLC
transmission

The ICLC transmission is confirmed by the
occurrence of one of the following:

• ICR[SNDICLC] = 0

• TISR[TXICLCF] = 1

ICLC Control Register
(ICR)

ICLC Frame request
(SNDICLC) = 0b0 Frame
transmitted

Transmit Interrupt Status
Register (TISR)

Transmit ICLC Frame
transmitted Interrupt
(TXICLCF) = 0b1

29 Clear
TXICLCF

Write TISR[TXICLCF] = 1 Transmit Interrupt Status
Register (TISR)

Transmit ICLC Frame
transmitted Interrupt
(TXICLCF) = 0b1

30 Clear
ICLCSEQ

Write ICR[ICLCSEQ] = 0 to be able to set the
TDR bit

ICLC Control Register
(ICR)

ICLC enabled
(ICLCSEQ) = 0

31 Change
LFAST
master Rx
interface
speed

Write SCR[TDR] = 1 to change the LFAST
masters Tx interface speed.

Speed Control Register
(SCR)

Transmit Data Rate
(TDR) = 0b1 = High
speed (320 Mb/s)

32 Change
LFAST
master Rx

Write SCR[RDR] = 1 to change the LFAST
masters Rx interface speed

Speed Control Register
(SCR)

Receive Data Rate
(TDR) = 0b1= High
speed (320 Mb/s)

Table continues on the next page...

LFAST configuration

Introduction to the Zipwire Interface, Rev. 0, May 2015

Freescale Semiconductor, Inc. 19

Table 12. LFAST Master mode configuration (continued)

Step Description RM Operation Registers1 Bits

interface
speed

33 Confirm
speed
change

Wait until GSR reflects speed change by the
following

• GSR[LDSM] = 1

• GSR[DRSM] = 1

Global Status Register
(GSR)

Transmit Interface Data
Rate Status (LDSM) = 1
= Data rate of HIGH
speed mode

Receive Interface Data
Rate Status (DRSM) = 1
= Data rate of HIGH
speed mode

34 Enable
ICLCSEQ

Write ICR[ICLCSEQ] = 1 ICLC Control Register
(ICR)

ICLC enabled
(ICLCSEQ) = 1

35 Send ping to
confirm high
speed
operation

Write ICR[ICLCPLD] = 00h to confirm the
change in speed of the LFAST slave. This frame
should be written after waiting for the expected
delay in the start of the PLL and speed mode
change delay at the LFAST slave.

ICLC Control Register
(ICR)

ICLC Payload
(ICLCPLD) = 0x00 Ping
request from Master to
Slave

36 Write ICR[SNDICLC] = 1 ICLC Control Register
(ICR)

ICLC Frame request
(SNDICLC) = 0b1 =
initiate the transfer of an
ICLC frame

37 Confirm
ICLC
transmission

The ICLC transmission is confirmed by the
occurrence of one of the following:

• ICR[SNDICLC] = 0

• TISR[TXICLCF] = 1

ICLC Control Register
(ICR)

ICLC Frame request
(SNDICLC) = 0b0 Frame
transmitted

Transmit Interrupt Status
Register (TISR)

Transmit ICLC Frame
transmitted Interrupt
(TXICLCF) = 0b1

38 Clear
TXICLCF

Write TISR[TXICLCF] = 1 Transmit Interrupt Status
Register (TISR)

Transmit ICLC Frame
transmitted Interrupt
(TXICLCF) = 0b1

39 Disable
Arbiter and
Framer

Write MCR[TXARBD] = 1 after some delay to
ensure the ICLC frame is sent but no other
frame is sent to arbitration

Mode Configuration
Register (MCR)

Transmit Arbiter Disable
(TXARBD) = 0x1 =
Disable all other transmit
frame requests

40 Confirm
speed mode

The LFAST slaves speed mode is confirmed by
the occurrence of the following:

• If RIISR[ICPSF] = 1. The LFAST slave is
in High Speed mode

• If RIISR[ICPFF] = 1. The LFAST slave is
in Low Speed mode

Receive Interface
Control Logic Channel
(ICLC) Interrupt Status
Register (RIISR)

Ping Frame Response
successful (ICPSF) =ob1

Ping Frame Response
Failed (ICPFF) = 0b1

41 Enable
Arbiter and
Framer

If RIISR[ICPSF] = 1, then all frame arbitration is
enabled by both of the following operations:

• Write ICR[ICLCSEQ] = 0

• Write MCR[TXARBD] = 0

ICLC Control Register
(ICR)

ICLC Enabled
(ICLCSEQ) = 0b0 =
Enable Single ICLC
frames only

Mode Configuration
Register (MCR)

Transmit Arbiter Disable
(TXARBD) = 0x0 =
enable transmit arbiter
and framer.

1. Unless otherwise noted, all registers are in the LFAST module.

LFAST configuration

Introduction to the Zipwire Interface, Rev. 0, May 2015

20 Freescale Semiconductor, Inc.

2. It is possible that this value could be reduced, however, it is dependent on the actual crystal and system frequencies, as
well as board design parameters such as PLL stability, power supply stability, board layout, and other operating conditions.

3. The SIUL2 module is labeled as SIU in some devices.
4. The exact MSCR register and value will depend on the device type and whether the device is being programmed for

Master or Slave operation.

When operating in slave mode, the Zipwire interface requires much less initialization. The following table shows the
configuration of the MCU for the LFAST Slave interface.

Table 13. LFAST Slave mode configuration

Step Description RM Operation Registers1 Bits

0 Initialize
device pins
for the
Zipwire
interface

Set up the Positive and Negative Transmit pins
in the System Integration Unit Lite 2 (SIUL2)
Multiplexed Signal Control Registers (MSCR)

See Table 11

Set up the Positive and Negative Receive pins
in the SIUL2 MSCR

1 Set the
LFAST
wakeup
delay and
rate change
delay for the
Line Driver
(LD).

After reset the SLCR and RCDCR are
programmed according to the LVDS
requirements of the device.

LFAST Rate Change
Delay Control Register
(RCDCR)

Data Rate Controller
Count Value (DRCNT) =
0xF

LFAST Wakeup Delay
Control register (SLCR)

High Speed Sleep Mode
Exit Time (HSCNT) =
0x12 (18 cycles)

Low Speed Sleep Mode
Exit Time (LSCNT) = 0x1

Wake Up time for the LD
(HWKCNT) = 0x54

Wake Up time for the LD
(LWKCNT) = 0x2

2 Set the
LFAST
operating
speeds

The PLLCR is programmed with configuration
parameters for the PLL

LFAST PLL Control
Register (PLLCR)

PLL Loop Optimization
(LPCFG) = 3 (2x IBASE
current

Division Factor for the
PLL Reference Clock
(PREDIV) = 0 (Direct
Clock)

Feedback Division factor
for PLL Reference Clock
(FBDIV) = 15

Test mode
programmability
(IPTMODE) = 0b000
Normal functional mode.
Test modes should not
be used by customers.

SW signal to turn off the
PLL (SWPOFF) = 0b0.
The PLL should not be
disabled for normal
operation.

Software signal to turn
on the PLL (SWPON) =
0b0 = Do not turn on the
PLL

Table continues on the next page...

LFAST configuration

Introduction to the Zipwire Interface, Rev. 0, May 2015

Freescale Semiconductor, Inc. 21

Table 13. LFAST Slave mode configuration
(continued)

Step Description RM Operation Registers1 Bits

Invert reference clock
edge to the PFD
(REVINV) = 0b0 = The
reference clock should
not be inverted

PLL Lock Ready Count
Width (PLCLKCW) = 0b0
= 1040 cycles

Enable Fraction mode in
feedback divider
(FDINEN) = 0b0 - do not
enable

3 Set up the
SIUL2 MSCR
2

Initialize the Zipwire clock pin as an output to
send the clock to the Master

SIUL2 Multiplexed Signal
Control Register
(MSCR)3

Slave: MSCR =
0x2280_0001

4 Program the
LVDS
Control
Register

The LCR is programed with configuration
parameters of the LVDS

LCR = 0x0000_502C
(default value)

SWWKLD, SWSLPLD,
SWWKLR, SWSSLPLR,
SWOFFLD, SWONLD,
SWOFFLR, SWONLR =
0b0 - do not put the line
driver or line receiver to
sleep or disabled state

LVDS Line Receiver off
state (LVRXOFF) = 0b0 -
low when the LFAST
Receiver is in shutdown
mode

LVTXOE = 0b1 - output
buffer enabled

TXCMUX = 0b0 - do not
put phase clock on the
transmit pin

LVRFEN = 0b1 - enable
the LVDS reference

LVLPEN = 0b0 - enable
normal mode (not
loopback mode)

LVRXOP = 0b101 -
enable receive
termination and
configure for maximum
data rate

LVTXOP = 0b1 - enable
LFAST mode.

LVCKSS = 0b0 - use
normal data mode

LVCKP=0b0 - use the
direct PLL clock

Table continues on the next page...

LFAST configuration

Introduction to the Zipwire Interface, Rev. 0, May 2015

22 Freescale Semiconductor, Inc.

Table 13. LFAST Slave mode configuration
(continued)

Step Description RM Operation Registers1 Bits

5 Enable
LFAST and
select Master
or Slave
operation

Write MCR[MSEN] = 1. Then select LFAST
modes by configuring MCR[CTSEN],
MCR[TXSLPEN]and MCR[DATAEN]

Mode Configuration
Register (MCR)

Slave: MCR[MSEN] =
0b0

Enable Data Frame Transmission. MCR[DATAEN] = 0b1 -
enable data frame
transmission and
reception

6 Use 20 MHz
clock input
with divide
by 4 for PLL
clock

Select the fraction of sysclk in Low Speed Select
mode

Mode Configuration
Register (MCR)

MCR[LSSEL] = 0b1 -
divide by 4

7 Enable
LFAST
Transmitter
Line Driver
and Line
Receiver

Write MCR[DRFEN] = 1 to enable the LFAST Mode Configuration
Register (MCR)

LFAST Driver/Receiver
Enable (DRFEN) = 0b1 -
Enable

8 Enable
LFAST
Receiver

The LR is enabled by writing MCR[RXEN] = 1.
This also disables the Rx LVDS Line Receiver

Mode Configuration
Register (MCR)

LFAST Receiver Enable
(RXEN) = 0b1 =
Receiver Interface is
Enabled

9 Configure to
send ping
automatically

Configure automatic ping and set slave to
receive ICLC frame at appropriate speed by:

• writing PICR[PNGAUTO] = 1

• writing SCR[DRMD] = 1.

Ping Control
Register(PICR)

Ping Response Frame
Request (PNGAUTO) =
0b1 = Ping response
frame transmission
request is queued

Speed Control Register
(SCR)

Data Rate Controller
mode (DRMD) = 0b1 = In
LFAST Slave, the
reception of ICLC frame
for rate change sets
appropriate speed mode.

10 Confirm LD
enable signal
is received

The LD enable signal will be received by the
master sending an ICLC of 0x31. Reception can
be confirmed by either:

• RIISR[ICTEF] = 1

• MCR[TXEN] = 1

Rx ICLC Interrupt Status
Register (RIISR)

ICLC frame for LFAST
Slaves Tx Interface
Enable received
(TCTEF) = 0b1 =
Interrupt event has
occurred

Mode Configuration
Register (MCR)

LFAST Transmitter
Enable (TXEN) = 0b1 =
LFAST transmitter
Interface is enabled.
New requests are
accepted

11 Send ping
frame

After a write to MCR[TXARBD] = 0, a ping frame
will be sent on one of the following conditions:
PICR[PNGAUTO]=1 and 0x00 is received in
ICLC

Mode Configuration
Register (MCR)

Tx Arbiter Disable
(TXARBD) = 0b0 =
Enable Tx arbiter and
framer

Speed Mode Change

Table continues on the next page...

LFAST configuration

Introduction to the Zipwire Interface, Rev. 0, May 2015

Freescale Semiconductor, Inc. 23

Table 13. LFAST Slave mode configuration
(continued)

Step Description RM Operation Registers1 Bits

12 Confirm ping
frame
reception

Ping frame reception is confirmed if
RIISR[ICPRF] = 1.

Rx ICLC Interrupt Status
Register (RIISR)

ICLC Ping Frame
Request Received
(ICPRF) = 0b1 =
Interrupt event has
occurred

13 Confirm PLL
ON is
received

ICLC frame for PLL ON has been received when
RIISR[ICPONF] = 1

ICLC from for PLL ON
received (ICPONF) =
0b1 = Interrupt event has
occurred

14 Wait for PLL
lock

Wait for PLL to lock by confirming both:

• PLLLSR[PLLDIS] = 0

• PLLLSR[PLDCR] = 1

PLL and LVDS Status
Register (PLLSR)

PLL disable Status
(PLLDIS) = 0b0 = PLL
disable signal is negated

PLL Lock Delay Counter
Ready (PLDCR) = 0b1 =
PLL Lock delay counter
is decremented to 0

15 Confirm Tx
interface
speed
change

The speed of the Tx interface is changed on one
of the following conditions when SCR[DRMD] =
1 and an ICLC frame with payload 80h is
received.:

• H/W writes RIISR[ICTFF] = 1
• H/W writes SCR[TDR] = 1.

Rx ICLC Interrupt Status
Register (RIISR)

ICLC frame for LFAST
Slaves Tx Interface fast
mode switch received
(ICTFF) = 0b1 = Interrupt
event has occurred

Speed Control Register
(SCR)

Transmit Data Rate
(TDR) = 0b1 = Data rate
of Tx block is 312/320
Mb/s

16 Confirm Rx
interface
speed
change

The speed of the Rx interface is changed on
one of the following conditions when
SCR[DRMD] = 1 and an ICLC frame with
payload 10h is received.:

• H/W writes RIISR[ICRFF] = 1.
• H/W write SCR[RDR] = 1.

Rx ICLC Interrupt Status
Register (RIISR)

ICLC frame for LFAST
Slaves Rx Interface fast
mode switch received
(ICRFF) = 1 = Interrupt
event has occurred

Speed Control Register
(SCR)

Receiver Data Rate
(TDR) = 0b1 = Data rate
of Rx block is 312/320
Mb/s

1. Unless otherwise noted, all registers are in the LFAST module.
2. The SIUL2 module is labeled as SIU in some devices.
3. The exact MSCR register and value will depend on the device type and whether the device is being programmed for

Master or Slave operation.

5 Zipwire hardware and layout

Zipwire hardware and layout

Introduction to the Zipwire Interface, Rev. 0, May 2015

24 Freescale Semiconductor, Inc.

The Zipwire interface is intended to be used to communicate between two nodes implemented on a single board. The
interface uses a "low speed" reference clock that is shared between the two nodes. A single-ended 10 to 264 MHz reference
clock is used to generate the Zipwire high speed operation of approximately 320 MHz. A termination resistor is required at
the receiving end of the clock for best performance of the interface. The value of the resistor depends on the board layout and
impedance.

The data signals use a low voltage differential signaling (LVDS) that is internally terminated on the MCU.

The following diagram shows the connection between two devices.

+

–
100 ΩSIPIB

us
 M

as
te

r
In

te
rf

ac
e

R
eg

is
te

r
In

te
rf

ac
e

In
te

rr
up

t
R

eq
ue

st
D

M
A

R
eq

ue
st

R
eg

is
te

r
In

te
rf

ac
e

In
te

rr
up

t
R

eq
ue

st

LFAST
Receive
Channel

Transmit
Channel

Reference
Clock

MCU - Zipwire Master MCU - Zipwire Slave

100 Ω
+

–

SIPI B
us

 M
as

te
r

In
te

rf
ac

e

R
eg

is
te

r
In

te
rf

ac
e

In
te

rr
up

t
R

eq
ue

st

D
M

A
R

eq
ue

st

R
eg

is
te

r
In

te
rf

ac
e

In
te

rr
up

t
R

eq
ue

st

LFAST

Receive
Channel

Transmit
Channel

Reference
Clock

C
lo

ck
 fr

om
 M

C
U

cl
oc

k
sy

st
em

Zipwire Zipwire

TBD Ω

Figure 5. Typical Zipwire hardware interface

The Zipwire interface is a high-speed interface, therefore care should be taken in laying out the signals on a printed circuit
board. The following guidelines are suggested.

• A controlled impedance PCB is required for the LVDS signals.
• The differential LVDS + and – pair should be routed parallel and close to each other. The length of the + and - pairs

should be matched to less than 0.05 inches of difference.
• The LVDS transmit pairs should be of the same approximate length (within 0.1 inches). The receive pins should also be

the approximate length (within 0.1 inches), but are not required to be the same length as the transmit signals.
• The differential pair should be routed with a maximum of two vias. Ideally, the differential pair should be routed

without vias on a single plane of the board preferably on the top or bottom plane of the board. However, due to pin
escape issues with the placement of the high speed signals on the surface mounted devices, routing on a single layer is
not possible.

• Keep necking of the signal to less than 0.01 inch to avoid discontinuities. Some necking is usually required in escaping
the signals for the BGA or LQFP signal feeds to other layers on the board.

• The differential pair must be routed on a layer that is one dielectric away from ground.
• A connector is not recommended for the Zipwire interface, but if a connector is used, a high speed connector system,

such as the Samtec ERF8 0.8 mm Edge Rate Rugged High Speed Socket, should be used with twin-ax cabling. The odd
side of the connector should be placed parallel and nearest to the MCU package on the board to allow direct connection
to the package signals. See Zipwire connector.

Appendix A Zipwire driver
This section describes the Freescale Zipwire driver that is used in the Zipwire example code.

The Zipwire driver requirements and APIs are described in the API Reference section. The Zipwire driver implements
software to control the SIPI and LFAST modules of the MCU.

4. 20 MHz is the most commonly used frequency, 10 MHz can also be used. 26 MHz is not recommended.

Zipwire hardware and layout

Introduction to the Zipwire Interface, Rev. 0, May 2015

Freescale Semiconductor, Inc. 25

A.1 Overview
The Zipwire Inter-processor Communication Interface is a combination of the Serial Interprocessor Interface module and the
LVDS Fast Asynchronous Serial Transmission interface. This provides a standard interface for communicating at a high
speed between two microcontrollers or between a microcontroller and a smart peripheral. This driver provides a standard
Application Programming Interface to use the Zipwire interface in user written software.

A.2 About this Appendix
This Technical Reference Appendix employs the following typographical conventions:

• boldface type: Bold is used for important terms, notes and warnings.
• courier font: Courier typeface is used for code snippets in the text. Note that C language modifiers such “const” or

“volatile” are sometimes omitted to improve readability of the presented code.

Notes and warnings are shown below:

Note
This is a note.

A.3 Zipwire Driver API
The Zipwire driver API implements the basic functions required to use the Zipwire interface as detailed in this document.

A.3.1 Driver Design Summary
The Zipwire driver API provides services for the following features:

• LOW LEVEL
• LFAST Initialization for High Speed mode and Low Speed mode (20 MHz and 10 MHz)
• SIUL2 configuration for Zipwire pins and clock signal for both, initiator and target mode.
• Clock Initialization for AUXCLOCK 1 (LFAST exclusive clock)

• API LEVEL
• SIPI initiator and Target Initializations
• SIPI Mode Changes
• SIPI Channel Initialization.
• Read Transfer Operation
• Write Transfer Operation (DMA Supported)
• Stream Transfer Operation
• Event Trigger Operation
• ID Operation

All of the Zipwire API functions are included in a single 'C' source code file.

Overview

Introduction to the Zipwire Interface, Rev. 0, May 2015

26 Freescale Semiconductor, Inc.

Table A-1. Zipwire function file locations

File Name Description Function

SIPI_HSSL_API.c Zipwire API functions uint8_t SIPI_read(DATA_TEMPLATE_t data_address,
CHANNEL_t channel, uint8_t injected_error)

uint32_t SIPI_read_channel_data(CHANNEL_t channel)

uint8_t SIPI_multiple_read(DATA_TEMPLATE_t * read_array,
uint16_t array_length, CHANNEL_t channel, uint8_t
injected_error, uint32_t * read_temp)

uint8_t SIPI_write(DATA_TEMPLATE_t write_data,
CHANNEL_t channel, uint8_t injected_error)

uint8_t SIPI_multiple_write(DATA_TEMPLATE_t
write_array[], uint16_t array_length, CHANNEL_t channel,
uint8_t injected_error, uint8_t DMA_Enable, uint32_t *
dma_array)

uint8_t SIPI_ID(uint32_t * id_array, CHANNEL_t channel)

uint8_t SIPI_init_INITIATOR(uint16_t Clock_Prescale)

uint8_t SIPI_init_TARGET(uint32_t max_count, uint32_t
reload_address, uint8_t Add_Inc)

uint8_t SIPI_init_channel(CHANNEL_t channel, uint8_t mode,
uint8_t error_int_enable, uint8_t data_int_enable)

uint8_t SIPI_Trigger(CHANNEL_t channel)

uint8_t SIPI_get_initiator_event(uint8_t channel_number)

uint8_t SIPI_reset()

uint8_t SIPI_module_mode(uint8_t Mode)

In addition to the API code, there are additional header files that are included in the Zipwire API. These are shown in the
following table.

Table A-2. Zipwire API header files

File Name Description

SIPI_HSSL_Header_v4.h This header file provides all of the prototype functions for the Zipwire driver. This
file can be included in the target software to include the Zipwire API functions.

SIPI_API.h This header file contains all of the necessary definitions for the Zipwire driver
internal use.

A.3.2 API Reference
This section contains description of the Zipwire driver API.

Zipwire Driver API

Introduction to the Zipwire Interface, Rev. 0, May 2015

Freescale Semiconductor, Inc. 27

A.3.2.1 Function Index
Table A-3. Quick Function Reference

Type Name Arguments

uint8_t SIPI_ID uint32_t * id_array
CHANNEL_t channel

uint8_t SIPI_Trigger CHANNEL_t channel

uint32_t SIPI_get_initiator_event1 uint8_t channel_number

uint8_t SIPI_init_INITIATOR uint16_t Clock_Prescale

uint8_t SIPI_init_TARGET uint32_t max_count
uint32_t reload_address
uint8_t Add_Inc

uint8_t SIPI_init_channel CHANNEL_t channel
uint8_t mode
uint8_t error_int_enable
uint8_t data_int_enable

uint8_t SIPI_module_mode uint8_t Mode

uint8_t SIPI_multiple_read DATA_TEMPLATE_t read_array[]
uint16_t array_length
CHANNEL_t channel
uint8_t injected_error
uint32_t * read_temp

uint8_t SIPI_multiple_write DATA_TEMPLATE_t write_data
CHANNEL_t channel
uint8_t injected_error

uint8_t SIPI_read DATA_TEMPLATE_t data_address
CHANNEL_t channel
uint8_t injected_error

uint32_t SIPI_read_channel_data CHANNEL_t channel

uint8_t SIPI_reset void

uint8_t SIPI_stream_transfer uint32_t * temp_data_stream
uint8_t initiator
uint8_t length

uint8_t SIPI_write DATA_TEMPLATE_t write_data
CHANNEL_t channel
uint8_t injected_error

1. SIPI_get_initiator_event not implemented

A.3.2.2 Function SIPI_reset
Performs soft reset of module. Clears all status and error registers, returning the module to 'Disabled'. Any transfers in
progress when reset is called will immediately end. Returns '0' if successful, error code otherwise.

Prototype: uint8_t SIPI_reset(void);

Return:
• 0 = Successfully Reset on Module

Zipwire Driver API

Introduction to the Zipwire Interface, Rev. 0, May 2015

28 Freescale Semiconductor, Inc.

A.3.2.3 Function SIPI_init_TARGET
Initializes Target side of SIPI module, setting SIPI_MCR[TEN], SIPI_MAXCR and SIPI_ARR. Returns '0' if successful,
error code otherwise.

Prototype: uint8_t SIPI_init_TARGET(uint32_t max_count, uint32_t reload_address, uint8_t
Add_Inc);

Table A-4. SIPI_init_TARGET Arguments

Type Name Direction Description

uint32_t max_count input Maximum address count value of target node

uint32_t reload_address input Reload value for the address counter at target node

uint8_t Add_Inc input Integer representation of Address Increment/Decrement bits.
Can be 0,1,2 or 3 for 'No change, Increment Address by 4,
Decrement Address by 4, or Not Used respectively.

Return:
• 0 = Successfully Set Up Target Node
• 1 = Address Increment Error
• 2 = Max Count Address Conflicts with Address Count

A.3.2.4 Function SIPI_init_channel
Initializes SIPI Channels. Sets up SIPI_CIRn registers. Will also need to set up interrupts/events to handle received packets
appropriately. Clears all errors and events associated with the channel. Returns '0' if successful, error code otherwise.

Prototype: uint8_t SIPI_init_channel(CHANNEL_t channel, uint8_t mode, uint8_t error_int_enable,
uint8_t data_int_enable);

Table A-5. SIPI_init_channel Arguments

Type Name Direction Description

CHANNEL_t channel input SIPI Channel to use. Should be passed as 1 element of
CHANNEL array.

uint8_t mode input Sets the channel mode to be used. Set 0 - Run, 1 - Disabled,
2 - clear error, 3 - stop request;

uint8_t error_int_enable input Set to 1 to enable error interrupts on the channel

uint8_t data_int_enable input Set to 1 to enable data interrupts on the channel

Return:
• 0 = Successfully Set Up Channel
• 1 = Incorrect Channel Mode
• 2 = Incorrect Channel

Zipwire Driver API

Introduction to the Zipwire Interface, Rev. 0, May 2015

Freescale Semiconductor, Inc. 29

A.3.2.5 Function SIPI_module_mode
Puts the SIPI module into the required mode. Must be used to place module into 'INIT' mode before calling the SIPI_init
functions. Returns '0' if successful, error code otherwise.

Prototype: uint8_t SIPI_module_mode(uint8_t Mode);

Table A-6. SIPI_module_mode Arguments

Type Name Direction Description

uint8_t Mode input Integer representation of required mode. 0 = Disabled, 1 =
Enabled/Init, 2 = Enabled/Run

Return:
• 0 = Successfully Set Up Module Mode
• 1 = Invalid Mode Selected

A.3.2.6 Function SIPI_init_INITIATOR
Initializes Initiator side of SIPI module, setting SIPIMCR with clk prescale, AID and MOEN. Returns '0' if successful, error
code otherwise.

Prototype: uint8_t SIPI_init_INITIATOR(uint16_t Clock_Prescale);

Table A-7. SIPI_init_INITIATOR Arguments

Type Name Direction Description

uint16_t Clock_Prescale input Integer representation of Prescale for Timeout Clock. Default
is 64. Can be 64, 128, 256, 512 or 1024.

Return:
• 0 = Successfully Set Up Initiator Node
• 1 = Incorrect Clock Prescale

A.3.2.7 Function SIPI_get_initiator_event
Returns 32 bit register showing event status for the channel. Should be polled with mask within calling function to determine
if transactions have completed successfully.

Prototype: uint32_t SIPI_get_initiator_event(uint8_t channel_number);

Table A-8. SIPI_get_initiator_event Arguments

Type Name Direction Description

uint8_t channel_number input SIPI Channel to use.

Return:
• 0 = Incorrect Channel
• SW Channel Status Register

Zipwire Driver API

Introduction to the Zipwire Interface, Rev. 0, May 2015

30 Freescale Semiconductor, Inc.

A.3.2.8 Function SIPI_ID
Sends ID Request Frame to target. Stores received command in the address passed. Returns '0' if successful, error code
otherwise.

Prototype: uint8_t SIPI_ID(uint32_t *id_array, CHANNEL_t channel);

Table A-9. SIPI_ID Arguments

Type Name Direction Description

uint32_t * id_array input used as a dummy data to set CAR to initiate the transfer

CHANNEL_t channel input SIPI Channel to use. Should be passed as 1 element of
CHANNEL array.

Return:
• 0 = Successfully Received Acknowledge and ID
• 2 = Channel Busy
• 3 = Invalid Channel
• 4 = Timeout Error

A.3.2.9 Function SIPI_read_channel_data
Reads channel data when a successful read reply / ID reply is received.

NOTE
The function will always return a 32 bit value. If 8 or 16 bit data is read, it will be
replicated as described in the RM. A relevant casting / mask operation may be required
for 8 and 16 bit read replies. Need to check for command completion and channel errors
before calling this function.

Prototype: uint32_t SIPI_read_channel_data(CHANNEL_t channel);

Table A-10. SIPI_read_channel_data Arguments

Type Name Direction Description

CHANNEL_t channel input SIPI Channel the received data used.

Return:
• 0 = Invalid Channel
• 32-bit value contained in Channel data register.

A.3.2.10 Function SIPI_read
Performs a single read transfer. Returns '0' if successful, error code otherwise. Stores read value in DATA_TEMPLATE_t
passed.

Prototype: uint8_t SIPI_read(DATA_TEMPLATE_t data_address, CHANNEL_t channel, uint8_t
injected_error);

Zipwire Driver API

Introduction to the Zipwire Interface, Rev. 0, May 2015

Freescale Semiconductor, Inc. 31

Table A-11. SIPI_read Arguments

Type Name Direction Description

DATA_TEMPLATE_t data_address input DATA_TEMPLATE_t structure which includes read Address
and data size.

CHANNEL_t channel input SIPI Channel to use. Should be passed as 1 element of
CHANNEL array.

uint8_t injected_error input injected error (if required) - Not currently implemented

Return:
• 0 = Successful
• 1 = Invalid Width
• 2 = Channel Busy
• 3 = Invalid Channel
• 4 = Timeout Error

A.3.2.11 Function SIPI_multiple_read
Performs a direct read transfer. Returns '0' if successful, error code otherwise. Stores read values in struct pointed to. Should
call SIPI_read() to process each read in array.

Prototype: uint8_t SIPI_multiple_read(DATA_TEMPLATE_t *read_array, uint16_t array_length,
CHANNEL_t channel, uint8_t injected_error, uint32_t *read_temp);

Table A-12. SIPI_read_channel_data Arguments

Type Name Direction Description

DATA_TEMPLATE_t read_array input Pointer to DATA_TEMPLATE_t structure which includes read
address.

unit16_t array_length input Amount of data elements in array to be sent.

CHANNEL_t channel input SIPI Channel to use. Should be passed as one element of
CHANNEL array.

uint8_t injected_error input injected error (if required).

uint32_t read_temp output Provides a pointer to a data structure that will store all read
data.

Return:
• 0 = Invalid Channel
• 32-bit value contained in Channel data register.

A.3.2.12 Function SIPI_write
Performs a direct write transfer. Returns '0' if successful, error code otherwise.

Prototype: uint8_t SIPI_write(DATA_TEMPLATE_t write_data, CHANNEL_t channel, uint8_t
injected_error);

Zipwire Driver API

Introduction to the Zipwire Interface, Rev. 0, May 2015

32 Freescale Semiconductor, Inc.

Table A-13. SIPI_write Arguments

Type Name Direction Description

DATA_TEMPLATE_t write_data input DATA_TEMPLATE_t structure which includes write Address
and Data to be written

CHANNEL_t channel input SIPI Channel to use. Should be passed as 1 element of
CHANNEL array.

uint8_t injected_error input injected error (if required)

Return:
• 0 = Successfully Set Up
• 1 = Invalid Data Size
• 2 = Channel Busy
• 3 = Invalid Channel
• 4 = Timeout Error / Wrong Acknowledge

A.3.2.13 Function SIPI_multiple_write
Performs multiple transfers. Returns '0' if successful, error code otherwise. SIPI_write should be called to process each
separate write in array, and poll for the SIPI_write_ack function to complete before moving to next message.

Prototype: uint8_t SIPI_multiple_write(DATA_TEMPLATE_t *write_array, uint16_t array_length,
CHANNEL_t channel, uint8_t injected_error, uint8_t DMA_Enable, uint32_t *dma_array);

Table A-14. SIPI_multiple_write Arguments

Type Name Direction Description

DATA_TEMPLATE_t * write_array input DATA_TEMPLATE_t structure which includes array containing
write Address and Data to be written for each array record.

uint16_t array_length input Amount of data elements in array to be written.

CHANNEL_t channel input SIPI Channel to use. Should be passed as 1 element of
CHANNEL array.

uint8_t injected_error input injected error (if required)

uint8_t DMA_Enable input Selects whether DMA should be used for transfer or software.
Software will form blocking function which will run until all
writes complete.

uint32_t * dma_array input receives a pointer to an array of integers that contains DMA
friendly structure

Return:
• 0 = Successfully Set Up
• 1 = Invalid Data
• 2 = Channel Busy
• 3 = Invalid Channel
• 4 = Timeout Error / Wrong Acknowledge

Zipwire Driver API

Introduction to the Zipwire Interface, Rev. 0, May 2015

Freescale Semiconductor, Inc. 33

A.3.2.14 Function SIPI_Trigger
Sends Trigger Request Frame to target. Returns '0' if successful, error code otherwise.

Prototype: uint8_t SIPI_Trigger(CHANNEL_t channel);

Table A-15. SIPI_Trigger Arguments

Type Name Direction Description

CHANNEL_t channel input SIPI Channel to use. Should be passed as 1 element of
CHANNEL array.

Return:
• 0 = Successfully Sent Trigger Command
• 1 = Incorrect Channel
• 2 = Channel Busy

A.3.2.15 Function SIPI_stream_transfer
Performs a streaming write transfer. Returns '0' if successful, error code otherwise.

Prototype: uint8_t SIPI_stream_transfer(uint32_t *temp_data_stream, uint8_t initiator, uint8_t
length);

Table A-16. SIPI_stream_transfer Arguments

Type Name Direction Description

uint32_t * temp_data_stream input Pointer to address containing start of data to be streamed.

uint8_t initiator input Decides which configuration will be taken, Initiator or Target.

uint8_t length input amount of bytes to be sent

Return:
• 0 = Stream Successful
• 1 = Invalid Length
• 2 = Acknowledge Error

A.3.3 Structure definitions

This section describes structures that are used by the Zipwire driver.

A.3.3.1 Structure CHANNEL_t
CHANNEL structure should be utilized as a 4 element array in the application (for SIPI channels 1-4).

Declaration

typedef struct
{
 uint8_t Number,

Zipwire Driver API

Introduction to the Zipwire Interface, Rev. 0, May 2015

34 Freescale Semiconductor, Inc.

 uint8_t Timeout
} CHANNEL_t;

Table A-17. Structure CHANNEL_t member description

Member Description

Number Defines the Zipwire Channel Number that will be used.

Timeout Can be used to hold if a specific channel request has timed out.

A.3.3.2 Structure DATA_TEMPLATE_t
DATA_TEMPLATE structure should contain write Address and Data pointers for SIPI_write command,read Address pointer
and Data size for SIPI_read.

Declaration

typedef struct
{
 uint32_t Data,
 uint32_t Address,
 uint16_t Size
} DATA_TEMPLATE_t;

Table A-18. Structure DATA_TEMPLATE_t member description

Member Description

Data Data that will be transferred

Address Holds the address where the data will be written or read from on target.

Size Specifies the size of the write and read values.

Appendix B Zipwire connector
In most cases, the Zipwire interface will be implemented between two devices on the same printed circuit board (PCB). For
evaluation purposes, a connector may be desired. The tables below show the recommended connectors and the recommended
pin out for a Zipwire interface. The recommended connector is a 10-pin (5 position) from Samtec. Cable locks on each end of
the connector are also grounded.

CAUTION
Zipwire is intended to be used between two devices on the same printed circuit board.
This connector and cable is only intended for evaluation of products and not for actual
customer implementations.

The differential signals should ideally be implemented as twin-axial cables if a cable is used. When the devices are located on
the same board, the signals should be routed as matched impedance pairs.

Table B-1. Recommended Connector (Samtec part numbers)

Target connector ERF8-005-05.0-L-DV-L-TR

12 inch cross-over cable1 HDR-169378-xx2

1. Approximate length.

Introduction to the Zipwire Interface, Rev. 0, May 2015

Freescale Semiconductor, Inc. 35

2. xx is the revision number

Table B-2. MPC57xx SIPI connector

Position Signal Direction Pin number Pin number Direction Signal

GND

1 SIPI_TXP In 1 2 GND Ground reference

2 SIPI_TXN In 3 4 GND Ground reference

3 Ground GND 5 6 In/Out REFCLK

4 SIPI_RXN1 Out 7 8 GND Ground reference

5 SIPI_RXP Out 9 10 GND Ground reference

GND

1. Initial definition of this connector (prior to November 2011) had the SIPI_RXP and SIPI_RXN reversed.

The table below shows the descriptions of the SIPI/LFAST signals.

Table B-3. SIPI signal descriptions

Signal Direction (as viewed
by the MCU)

Description

SIPI_TXP Input Zipwire LFAST Transmit Positive terminal

SIPI_TXN Input Zipwire LFAST Transmit Negative terminal

SIPI_RXP Output Zipwire LFAST Receive Positive terminal

SIPI_RXN Output Zipwire LFAST Receive Negative terminal

REFCLK Input or output LFAST reference clock. This should be either 10 or 20 MHz. The clock is
always generated by the slave LFAST device and is generated from the
MCU PLL0:PHI clock. The master SIPI device uses the DRCLK as its
reference.

A cross-over cable will be available from Samtec/Freescale to connect two Zipwire interfaces together that are located on
separate boards. The initial cable available will be approximately 12 inches in overall length.

The pin out of the cross-over cable is shown in the following table.

NOTE
One device must be set to be the master and the other device must be set as a slave to
avoid contention on the DRCLK signal.

Table B-4. Cross-over cable connections

Master Signal Connector M Pin Connector S Pin Slave signal

SIPI_TXP 1 ——> 9 SIPI_RXP

SIPI_TXN 3 ——> 7 SIPI_RXN

REFCLK 6 <—— 6 REFCLK

SIPI_RXN 7 <—— 3 SIPI_TXN

SIPI_RXP 9 <—— 1 SIPI_RXP

GND 2, 4, 5, 8, and 10 <——> 2, 4, 5, 8, and 10 GND

The figure below shows a drawing of a cable that is available from Freescale engineering.

Introduction to the Zipwire Interface, Rev. 0, May 2015

36 Freescale Semiconductor, Inc.

Figure B-1. HDR-169378-01 cable drawing

Appendix C References

Additional information can be found in the documentation listed below.

Table C-1. References

Document Title Availability

AN4566 MPC5746M Hardware Design freescale.com

AN4812 Initializing the MPC5777M Clock Generation
Module and Progressive Clock Switching Feature

freescale.com

MPC574xPRM, MPC5777CRM, MPC577xKRM,
MPC5777MRM, S32V234RM

Device Reference Manual

Appendix D Revision history

Table D-1. Revision history

Revision Description Date

1 Initial customer release May 2015

Introduction to the Zipwire Interface, Rev. 0, May 2015

Freescale Semiconductor, Inc. 37

http://cache.freescale.com/files/32bit/doc/app_note/AN4566.pdf
http://cache.freescale.com/files/microcontrollers/doc/app_note/AN4812.pdf

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, SafeAssure, and SafeAssure logo are
trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off.
The Power Architecture and Power.org word marks and the Power and
Power.org logos and related marks are trademarks and service marks
licensed by Power.org. ARM and Cortex are registered trademarks of
ARM Limited (or its subsidiaries) in the EU and/or elsewhere. mbed is a
trademark of ARM Limited (or its subsidiaries) in the EU and/or
elsewhere. All rights reserved. All other product or service names are
the property of their respective owners.

© 2015 Freescale Semiconductor, Inc.

Document Number AN5134
Revision 0, May 2015

http://www.freescale.com
http://www.freescale.com/support
http://freescale.com/SalesTermsandConditions

	Introduction
	Zipwire Interface overview
	Zipwire SIPI LFAST software model
	Typical Zipwire example overview

	Zipwire examples
	Function file locations
	Zipwire demo overview
	Function index
	Function MC_MODE_INIT
	Function user_testcase
	Function LFAST_Configure
	Function sipi_app_note_ID
	Function sipi_app_note_read
	Function sipi_app_note_write
	Function sipi_app_note_multiple_read_no_dma
	Function sipi_app_note_multiple_write_no_dma
	Function sipi_app_note_multiple_write_dma
	Function sipi_app_note_stream_write
	Function sipi_app_note_event

	LFAST clock settings
	Zipwire pins
	Example Configuration
	Define CONFIGURED_AS_MASTER

	LFAST configuration
	Zipwire hardware and layout
	Appendix A: Zipwire driver
	Overview
	About this Appendix
	Zipwire Driver API
	Driver Design Summary
	API Reference
	Function Index
	Function SIPI_reset
	Function SIPI_init_TARGET
	Function SIPI_init_channel
	Function SIPI_module_mode
	Function SIPI_init_INITIATOR
	Function SIPI_get_initiator_event
	Function SIPI_ID
	Function SIPI_read_channel_data
	Function SIPI_read
	Function SIPI_multiple_read
	Function SIPI_write
	Function SIPI_multiple_write
	Function SIPI_Trigger
	Function SIPI_stream_transfer

	Structure definitions
	Structure CHANNEL_t
	Structure DATA_TEMPLATE_t

	Appendix B: Zipwire connector
	Appendix C: References
	Appendix D: Revision history

