
i.MX8M Safety Example

NXP Semiconductors Document identifier: IEC60730BIMX8MXEUG
User's Guide Rev. 3, 07/2021

Contents
Chapter 1 IEC60730B Safety library example user's guide...................................3

Chapter 2 Hardware settings... 4

Chapter 3 File structure... 7

Chapter 4 Example application.. 9

Chapter 5 Running example.. 14

Chapter 6 IEC60730B tests... 22

Chapter 7 Revision history...25

NXP Semiconductors

i.MX8M Safety Example , Rev. 3, 07/2021
User's Guide 2 / 26

Chapter 1
IEC60730B Safety library example user's guide
For easier development of the IEC60730B application, the library also provides the example code. This example is distributed
through the MCUXpresso SDK website. This example user's guide describes how to set the hardware correctly and how to use
the example code with the IEC60730B Safety library.

The library user's guide is the main documentation for IEC60730B. It is also part of this package and you can download it at
www.nxp.com/IEC60730.

NXP Semiconductors

i.MX8M Safety Example , Rev. 3, 07/2021
User's Guide 3 / 26

https://mcuxpresso.nxp.com/en/welcome
http://www.nxp.com/IEC60730

Chapter 2
Hardware settings
This chapter describes how to set up the hardware of the evaulation board. The MCU peripherals' setup is described later on.

The IEC60730B library example for the I.MX8mx family supports the following development boards:

• EVKmimx8mm

• EVKmimx8mn

To run the IEC60730B example application, it is neccessary to make some hardware settings. For the default configuration of your
development board, see the corresponding board's user manual at www.nxp.com.

2.1 EVK-MIMX8MM (Mini)
The hardware requirements are as follows:

• i.MX8M Mini development board (EVK-MIMX8MM)

• J-Link debug probe

• USB-C cable (12-V power supply)

• USB-C cable (download to ROM memory)

• Micro USB cable (debug print)

Debugger:

The default debugger in the example project is set to J-Link.

FreeMASTER

FreeMASTER communication is used via an external J-Link plugin.

The hardware settings are as follows:

1. Connect the 12-V power supply (J302 USB port) and the J-Link debug probe to the board and switch the SW101 switch to
power on the board.

2. Connect a USB-C cable between the host PC and the J301 USB port (this port allows downloading to the ROM memory).

3. If a debug print is needed, connect a micro USB cable between the host PC and the J901 USB port on the target board.
Then open the serial terminal with the following settings:

• 115200 baud rate

• 8 data bits

• No parity

• One stop bit

• No flow control

4. Set the SW1101 switch to value "01110010" and SW1102 to value "00101010" to boot from the eMMC.

See www.nxp.com/imx8mminievk for more information.

NXP Semiconductors

i.MX8M Safety Example , Rev. 3, 07/2021
User's Guide 4 / 26

http://www.nxp.com/
http://www.nxp.com/imx8mminievk

Figure 1. Hardware connection of EVK-MIMX8MM

2.2 EVK-MIMX8MN (Nano)
The hardware requirements are as follows:

• i.MX8M Nano development board (EVK-MIMX8MN)

• J-Link debug probe

• USB-C cable (12-V power supply)

• USB-C cable (download to ROM memory)

• Micro USB cable (debug print)

Debugger:

The default debugger in the example project is set to J-Link.

FreeMASTER

FreeMASTER communication is used via an external J-Link plugin.

The hardware settings are as follows:

1. Connect the 12-V power supply (J302 USB port) and the J-Link debug probe to the board and switch the SW101 switch to
power on the board.

2. Connect a USB-C cable between the host PC and the J301 USB port (this port allows downloading to the ROM memory).

3. If a debug print is needed, connect a micro USB cable between the host PC and the J901 USB port on the target board.
Then open a serial terminal with the following settings:

• 115200 baud rate

• 8 data bits

• No parity

• One stop bit

• No flow control

4. Set switch SW1101 to "0100" to boot from the eMMC.

See www.nxp.com/ imx8mnanoevk for more information.

EVK-MIMX8MN (Nano)

i.MX8M Safety Example , Rev. 3, 07/2021
NXP Semiconductors 5

http://www.nxp.com/%20imx8mnanoevk

Figure 2. Hardware connection of EVK-MIMX8MN

EVK-MIMX8MN (Nano)

i.MX8M Safety Example , Rev. 3, 07/2021
NXP Semiconductors 6

Chapter 3
File structure
Safety is only a small part of the whole SDK package for your device. The IEC60730 library and examples are located in the
middleware and in the board folders. The IEC60730 library is independent of the SDK and can be used stand-alone.

3.1 Library source files location
The library source files are in the middleware/safety_iec60730b/safety/v4_2 folder in the SDK package.

The folder has the following structure:

Figure 3. Folder structure

Where:

• The common_test folder contains the source files for the peripheral test – this is a common cross core. These tests are
compiled to library libIEC60730B_<core>_COM_<compiler>_<version>.a.

• The compiler folder contains compiler support files.

• The core_test folder contains the source files for the core-dependent test. These tests are compiled to library
libIEC60730B_<core>_<compiler>_<version>.a.

• iec60730b.h is the main library header file.

• iec60730b_types.h is the header file with the necessary defines for the library.

The folder also contains binary *.lib files, which are compiled for the IAR, Keil, and MCUXpresso IDEs (see the release notes
for details).

NXP Semiconductors

i.MX8M Safety Example , Rev. 3, 07/2021
User's Guide 7 / 26

3.2 Example of library handling code
The library-handling code and the example aplication are separate from the library file. The example source files and other SDK
examples are at this path:

boards/<your board>/demo_apps/safety_iec60730b/

The safety example code is shown in Figure 4.

Figure 4. Example of project structure in example folder

This folder contains the example source file and three folders for the IDE project file:

• iar

• mcux

• mdk

The following files are generated by the MCUXpresso configuration tool:

• clock_config.h

• clock_config.c

• pin_mux.c

• pin_mux.h

Other files are used only for safety examples and their contents are described in the next chapter.

Example of library handling code

i.MX8M Safety Example , Rev. 3, 07/2021
NXP Semiconductors 8

Chapter 4
Example application
The structure of the example is common in all supported IDEs (IAR, Keil, MCUXpresso).

Figure 5. IAR example application structure

The project contains the CMSIS, SDK, library, and safety example-related folders.

The safety-related folders are the following:

• Board – this folder contains the files related to the board used (clock_config.h, pin_config.h, board.h, and so on).

• CPU – this folder contains the startup code and vectors table.

• IEC60730_Class_B – files for the IEC60730B Safety library.

NXP Semiconductors

i.MX8M Safety Example , Rev. 3, 07/2021
User's Guide 9 / 26

• Source – source file for the safety example (see the next explanation).

The example of project hiearchy is shown in Figure 6.

Figure 6. Example of project hiearchy

Figure 6 shows that the functions in the project_setup.c file are called from the main.c file. The library-handling functions are
located in the file and also called from the main.c file.

The main example application header file safety_config.h contains all definitions for running the safety test in examples. The
safety_test_items.c file declares the structures for the DIO (or TSI) safety test. The project_setup_<your_board>.c file contains
the setup functions (clock, port, UART, and so on). The file contains the handling function for safety routines from the IEC60730B
library and also the test-initialization function for safety.

4.1 How to open the project
IAR IDE

Open the project file located at boards/<your_board>/demo_apps/safety_iec60730b/iar/safety_iec60730b.eww.

Arm Keil IDE

Open the project file located at boards/<your_board>/demo_apps/safety_iec60730b/mdk/safety_iec60730b.uvprojx.

MCUXpresso IDE

Firstly, drag and drop the <name_of_the_package>.zip package into the MCUXpresso IDE (into the "Installed SDKs" tab).
Secondly, import the SDK example (safety_iec60730b).

How to open the project

i.MX8M Safety Example , Rev. 3, 07/2021
NXP Semiconductors 10

If you are not familiar with the MCUXpresso IDE yet, see docs/Getting Started with MCUXpresso SDK for <your_board>.pdf ("Build
an example application" section).

4.2 Build configurations
debug_ram

This configuration is targeted to be executed from the RAM memory. Thus, some safety tests must be turned off because the ROM
memory is not used (turn on/off a particular test in the beginning of the "safety_config.h" file).

1. Turn off the flash test, program counter test, and watchdog test.

2. Build the project (F7).

3. Download and debug (Ctrl+D).

4. Press F5 to run.

5. Check the terminal output: "Hello safety world!".

debug_flash

This configuration is targeted to be executed from the ROM memory. All safety tests can be turned on at the beginning of the
safety_config.h file.

The flash loader is not supported for the Nano device in the IAR IDE. Thus, the UUU tool must be used to download the binary
image into the ROM QSPI memory. The following steps are required to download the image to the ROM memory:

• Set the device to the download mode: switch SW1101 to value "1000".

• Setup the bootloader: check the Device Manager. Two new COM ports should appear. Open both COM ports in the serial
terminal (with settings mentioned above). The COM port with the higher number shows the output of the bootloader. The
other COM port shows the output of the application.

• Open the Windows OS command prompt and change the directory to
<PACKAGE_DIR>\example\boards\<your_board>\demo_apps\safety_iec60730b\iar\.

• Run the "uuu -b emmc uboot_emmc.bin" command and wait a few seconds. The output of the bootloader terminal should
look as follows:

MMC write: dev # 1, block # 0, count 2764 ... 2764 blocks written: OK
Writing 'bootloader' DONE!
Detect USB boot. Will enter fastboot mode!
Detect USB boot. Will enter fastboot mode!

• Turn off the board (SW101).

• Set the device to boot from eMMC:

— i.MX8M Mini: switch SW1101 to value "01110010" and SW1102 to value "00101010".

— i.MX8M Nano: switch SW1101 to value "0100".

• Turn on the board (SW101).

• Open the bootloader terminal and wait a few seconds. When "u-boot=> " appears, run the following commands in a sequence:

env set -f bootcmd "mmc dev ${mmcdev}; if mmc rescan; then if run loadbootscript;
then run bootscript; else if run loadimage; then run mmcboot; else sf probe; bootaux
0x8000000;; fi; fi; else booti ${loadaddr} - ${fdt_addr}; fi"

Build configurations

i.MX8M Safety Example , Rev. 3, 07/2021
NXP Semiconductors 11

env save
reset

• The bootlader is now located in the eMMC memory and set to boot automatically from the QSPI flash after the reset.

• Run the "fastboot usb" command (the device will wait for an input on the USB port).

• Build the project in the IAR IDE (press the "F7" key). The output is the
example\boards\<your_board>\demo_apps\safety_iec60730b\iar\debug_flash\Exe\dev_safety_iec60730b.bin file.

• Download the built image into the QSPI flash: Navigate to the
<PACKAGE_DIR>\example\boards\<your_board>\demo_apps\safety_iec60730b\iar\ directory in the Windows OS
command prompt.

• Run the "uuu -b qspi uboot_qspi.bin .\debug_flash\Exe\dev_safety_iec60730b.bin" command. Wait a few seconds. The
output of the Windows OS command prompt should look as follows:

uuu (Universal Update Utility) for nxp imx chips -- libuuu_1.2.135-0-gacaf035
Success 1 Failure 0
1:11 6/ 6 [Done] FB: done

• The output of the bootloader terminal should look as follows:

downloading of 18532 bytes finished
SF: Detected n25q256a with page size 256 Bytes, erase size 4 KiB, total 32 MiB
SF: 20480 bytes @ 0x0 Erased: OK
device 0 offset 0x0, size 0x4864
SF: 18532 bytes @ 0x0 Written: OK

• The image is now downloaded into the QSPI flash.

• Turn the board off and back on again.

• Check whether "Hello safety world!" is printed in the serial terminal.

• Debugging from the IAR IDE is possible only in the Attach mode (debugging without downloading).

4.3 Example settings - safety_config.h
The main example settings header file is safety_config.h. The neccessary macros for the safety example are defined in this file.

The "switch macros", which enable the user to turn off the calling of the safety test, are defined in the beginning. When starting,
turn off the FLASH test and the WDOG test. On LPC devices, turn off also the Clock test.

/* This macro enables infinity while loop in the SafetyErrorHandling() function */

#define SAFETY_ERROR_ACTION 1

/* TEST SWITCHES - for debugging, it is better to turn the FLASH and WDOG tests OFF. */

#define ADC_TEST_ENABLED 1

#define CLOCK_TEST_ENABLED 1

#define DIO_TEST_ENABLED 1

#define FLASH_TEST_ENABLED 1

#define RAM_TEST_ENABLED 1

Example settings - safety_config.h

i.MX8M Safety Example , Rev. 3, 07/2021
NXP Semiconductors 12

#define PC_TEST_ENABLED 1

#define WATCHDOG_ENABLED 1

#define FMSTR_SERIAL_ENABLE 1

Other defines are used to configure the safety test as a parameter to a function or to fill structures.

4.4 safety_test_items.c file
The safety_test_items.c and .h files are the configuration files for the DIO test.

The file contains the fs_dio_test_<platform>_t list of structures. The pointers to these structures are collected in the
dio_safety_test_items[] array, which is used in the example application.

4.5 Source file - safety_.c/.h
The source file and the corresponding *.h file contain a library handling function. Each function contains a detection. If a safety
error ocurrs, the SafetyErrorHandling() function is called.

safety_test_items.c file

i.MX8M Safety Example , Rev. 3, 07/2021
NXP Semiconductors 13

Chapter 5
Running example
For the first run of the example on your hardware, it is recomended to turn off Flash, WDOG, Clock, AIO, and DIO test. In the next
step, turn on step by step.

When the WDOG is turned off and a safety error happens, the example stays in an endless loop.

5.1 Post-build CRC calculation
The post-build CRC calculation can be used in several ways, depending on the IDE's built-in options. In IDEs that do not have the
built-in options, use the SRecord tool.

SRecord is a standalone utility for memory manipulation. This utility and all information about it are available at Peter Miller’s
http://srecord.sourceforge.net/ webpage.

In the SDK package, the SRecord tool is in the <sdk_pack>/tools/srecord folder.

In the IEC60730B Safety example, the SRecord tool is used for the post-build CRC calculations in the MCUXpresso and uVision
Keil IDEs.

In the IAR IDE, use the "ielftool" integrated feature.

The SRecord utility is used to calculate the post-build CRC without any changes. In the postbuild, an additional *.bat file that uses
the SRecord tool is called.

The invariable memory test can be turned off/on in file safety_config.h file.

 NOTE

5.1.1 Postbuild in IEC60730B safety example
The approach with SRecord is used in the safety examples for the MCUXpresso and uVision Keil IDEs, when the post-build
command calls the crc-hex.bat file, which supports the CRC16 and CRC32 calculations.

The crc-hex.bat file is in your SDK package, in the <sdk_package>/middleware/safety_iec60730b/tools/crc folder.

The complete post-build command, which is used in the safety example to calculate CRC32 in the uVision Keil IDE is as follows:

..\..\..\..\..\middleware\safety_iec60730b\tools\crc\crc_hex.bat
-..\..\..\..\boards\<YOUR_BOARD>\demo_apps\safety_iec60730b\mdk\debug\safety_iec60730b.hex
-..\..\..\..\boards\<YOUR_BOARD>\demo_apps\safety_iec60730b\mdk\debug\safety_iec60730b_crc.hex
-..\..\..\..\tools\srecord\srec_cat.exe -CRC32

"<YOUR_BOARD>" is the name of your SDK development board, e.g. "frdmk22f".

The first line is the path from the project root path (IDE project file) to the crc_hex.bat file. The other lines are the parameters for
the crc_hex.bat file.

The crc-hex.bat file has three mandatory parameters and one optional parameter:

• The first paramater is the path from the crc-hex.bat file to your application's *.hex file (safety_iec60730b.hex). It is the input
for the calculation.

• The second parameter is the path for the generated output file. This file (with the specified name) is stored as a result of
the script (safety_iec60730b_crc.hex) with the calculated CRC.

• The third parameter is the path from the crc-hex.bat file to the srec_cat.exe file.

• The fourth parameters is optional. When it is filled with"-CRC32", the result will be CRC32. Otherwise, the CRC16
calculation happens.

NXP Semiconductors

i.MX8M Safety Example , Rev. 3, 07/2021
User's Guide 14 / 26

http://srecord.sourceforge.net/

A dedicated structure in the input *.hex file is used to define the area where the CRC will be calculated. All necessary information
for the CRC will be read by the crc-hex.bat file from this structure.

Information table in the *.hex file

It is necessary to add a dedicated marker structure to the memory *.hex file to use the presented crc-hex.bat file.

The presented crc-hex.bat file parses the last 16 bytes from the input *.hex file to the found information table.

This information table must have a dedicated structure and it must be placed at the end of the input *.hex file.

The structure of the information table is as follows:

/* The safety-related FLASH CRC value. */

fs_crc_t c_sfsCRC =

{

.ui16Start = 0xA55AU,

.ui32FlashStart = (uint32_t)__ROM_start__,

.ui32FlashEnd = (uint32_t)&Load$$ER_IROM3$$Limit,

.ui32CRC = (uint32_t)FS_CFG_FLASH_TST_CRC,

.ui16End = 0x5AA5U

};

• 0x5AA5 - the start/end marker for the information table

• ui32FlashStart - the start address for the CRC calculation

• ui32FlashEnd - the end address for the CRC calculation

• ui32CRC - the seed value

This table must be placed at the end of the *.hex file. This can be assured by a linker script. The linker script depends on the IDE
used. The exact description for the supported IDE is in the following chapter.

5.1.2 Arm uVison Keil IDE postbuild CRC
The safety example in the uVision Keil used Srecord to generate the postbuild for the invariable memory test.

To use the presented crc-hex.bat file, it is necessary to have correct settings in the IDE.

From the start, all necessary settings are added in the example project by default:

• The Flash test is turned on in the safety_config.h file.

• The output *.hex file is turned on and the postbuild CRC is calculated by the crc-hex.bat file with the Srecord.

• The final post-processed image is downloaded to the ROM memory using the "Download" button.

5.1.2.1 Postbuild CRC settings
As mentioned in Postbuild in IEC60730B safety example , for the presented crc-hex.bat file, it is necessary to do some settings
also in the IDE.

1. Set the IDE to generate the output *.hex file. Go to "Options → Output" and check the "Create HEX File" box.

2. Enable the afterbuild options in "Options->User → After Build/Rebuild", check "Run #1", and fill it with the following command:

..\..\..\..\..\middleware\safety_iec60730b\tools\crc\crc_hex.bat
-..\..\..\..\boards\<YOUR_BOARD>\demo_apps\safety_iec60730b\mdk\debug\dev_safety_iec60730b.hex

Post-build CRC calculation

i.MX8M Safety Example , Rev. 3, 07/2021
NXP Semiconductors 15

-..\..\..\..\boards\<YOUR_BOARD>\demo_apps\safety_iec60730b\mdk\debug\dev_safety_iec60730b_crc.hex
-..\..\..\..\tools\srecord\srec_cat.exe

The meaning of this afterbuild command is described in Postbuild in IEC60730B safety example .

The product of the postbuild operation with the crc-hex.bat file is the <your_project_name>_crc.hex edited file, which must be
loaded to the target. The best way to do this is to create a debug initialization file.

5.1.2.2 Debug initialization settings
By default, the uVision Keil IDE downloads the output file specified in "Options->output". Due to this, it is necessary to create an
alternative debug initialization file. In our case, a *.hex file with an added CRC is dedicated for the download to the target.

In the uVision Keil IDE, it is necessary to select the following options:

• "Options ->Debug->Initialization file" - fill it with the "safety_debug.ini" pattern.

• "Options->Utilities->Init File" - fill it with the "safety_debug.ini" pattern.

Use a text editor to create the safety_debug.ini file. Create an empty file, save it with the *.ini extension, and copy the following
command into the file: "LOAD .\debug\<YOUR_PROJECT>_crc.hex INCREMENTAL".

This command loads the <YOUR_PROJECT>_crc.hex file from the .\debug\ relative path and this address is relative to the project
file (<YOUR_PROJECT>.uvprojx in the presented case). It means that the file is in the debug folder.

It is necessary to save this file to the project root path (to the folder with <YOUR_PROJECT>.uvprojx in the presented case).

After these IDE settings, the IDE calls the crc-hex.bat file after the build and it uses the alternative hex file
<YOUR_PROJECT>_crc.hex as the source for programming during the download.

5.1.2.3 Linker settings for information table
The crc-hex.bat postbuild file expects the information table at the end of the *.hex file. For this purpose, it is good to define your
own section in the linker. In the uVision Keil IDE, it can be the following:

LR_IROM3 m_fs_flash_crc_start __size_flash_crc__{

; Safety-flash CRC region

ER_CRC (m_fs_flash_crc_start) FIXED (__size_flash_crc__)

{

*(.flshcrc)

}

}

Where "m_fs_flash_crc_start" and "__size_flash_crc__" are the user-defined address. This address must be at the end of the flash.

After defining this section in the ROM, a correct structure must be defined in the C language:

/* The safety-related FLASH CRC value. */

fs_crc_t c_sfsCRC __attribute__((used, section(".flshcrc"))) =

{

.ui16Start = 0xA55AU,

Post-build CRC calculation

i.MX8M Safety Example , Rev. 3, 07/2021
NXP Semiconductors 16

.ui32FlashStart = (uint32_t)__ROM_start__,

.ui32FlashEnd = (uint32_t)&Load$$ER_IROM3$$Limit,

.ui32CRC = (uint32_t)FS_CFG_FLASH_TST_CRC,

.ui16End = 0x5AA5U

};

5.1.3 MCUxpresso postbuild CRC

The invariable memoty test example uses the crc-hex.bat file for the post-build calculation, so this example does
not work on Unix/Mac operating systems.

 NOTE

To use the crc-hec.bat file in the MCUXpresso IDE, do some settings in the IDE.

1. Set the "Options → C/C++ Build → Settings → Build steps → Post-build steps" options correctly.

2. Set the debug sesion (or the GUI Flash tool) configuration correctly.

3. Put the "Information table" at the end of the invariable memory.

5.1.3.1 Post-build configuration
It is necessary to set the post-build string, so go to the "Options → C/C++ Build → Settings → Build steps → Post-build steps" menu.

Copy and paste the following post-build string into it:

arm-none-eabi-objcopy -v -O ihex "${BuildArtifactFileName}" "${BuildArtifactFileBaseName}.hex"

${ProjDirPath}/crc_hex.bat -${ConfigName}/${BuildArtifactFileBaseName}.hex -${ConfigName}/$
{BuildArtifactFileBaseName}_crc.hex -tools\\srecord\\srec_cat.exe

This string ensures that the MCUxpresso IDE generates a *.hex file with the same name as your project. After this, call the
crc_hex.bat file with the correct parameters as follows:

• -${ConfigName}/${BuildArtifactFileBaseName}.hex - the path to your application *.hex file.

• -${ConfigName}/${BuildArtifactFileBaseName}_crc.hex - the path to the generated *.hex file with the CRC added.

• -tools\\srecord\\srec_cat.exe - the path to the screcat.exe utility.

Because the name of your poject is set as the "${BuildArtifactFileBaseName}" variable, this postbuild is independent on your
project name.

Post-build CRC calculation

i.MX8M Safety Example , Rev. 3, 07/2021
NXP Semiconductors 17

Figure 6. Configuration of post-build steps

5.1.3.2 Place information table
The crc-hex.bat file expects the information table in the last 16 bytes of the input *.hex file. This table can be defined as the
following structure:

/* The safety-related FLASH CRC value. */

fs_crc_t c_sfsCRC __attribute__((used, section(".flshcrc"))) =

{

.ui16Start = 0xA55AU,

.ui32FlashStart = (uint32_t)&__ROM_start__,

.ui32FlashEnd = (uint32_t)&m_safety_flash_end,

.ui32CRC = (uint32_t)FS_CFG_FLASH_TST_CRC,

.ui16End = 0x5AA5U

};

Post-build CRC calculation

i.MX8M Safety Example , Rev. 3, 07/2021
NXP Semiconductors 18

Where "__attribute__((used, section(".flshcrc")))" is a directive for the linker script to place this strucuture to memory
section "flshcrc".

MCUXpresso Linker settings

The structure definition in the above example expects memory section "flscrc" to be defined in the linker. This can be set as follows:

/* The safety FLASH CRC. */

.SEC_CRC m_fs_flash_crc_start : ALIGN(4)

{

FILL(0xff)

KEEP(*(.flshcrc*))

} >MEM_FLASH

Where "m_fs_flash_crc_start" is the user-defined address, but this section must be placed at the end of the output *.hex file.

5.1.3.3 Flash loader configuration
It is necessary to set a correct output file for the download to the target. There are the following two ways to do this in the
MCUXpresso IDE:

1. Using the "Debug configuration".

2. Using the "GUI Flash Tool".

Debug configuration

• Create the debug configuration for your debugger.

• Open the "Debug Configurations" menu ("Run → Debug configuration") and select the "Startup" tab. In this tab, select
"Load Image -> Use File -> <YOUR_PROJECT_NAME_crc.hex".

• This edited *.hex file is in the <workspace>/<your_project>/Debug/<your_project>_crc.hex folder.

This can be set in the OpenSDA, CMSIS-DAP, or J-Link debuggers.

Post-build CRC calculation

i.MX8M Safety Example , Rev. 3, 07/2021
NXP Semiconductors 19

Figure 6. Using output *.hex file with calculated CRC in MCUXpresso IDE

Using GUI Flash Tool

Only the SEGGER J-Link probes in the GUI Flash Tool support *.hex files.

In the GUI Flash Tool settings, select "Workspace → <Configuration> → <PROJECT_NAME>_crc.hex" file for download.

Post-build CRC calculation

i.MX8M Safety Example , Rev. 3, 07/2021
NXP Semiconductors 20

Figure 6. GUI Flash Tool - SEGGER J-Link

Post-build CRC calculation

i.MX8M Safety Example , Rev. 3, 07/2021
NXP Semiconductors 21

Chapter 6
IEC60730B tests
The library contains the following tests:

• Analog I/O test

• Clock test

• CPU register test

• Digital I/O test

• Invariable memory (flash) test

• Variable memory (RAM) test

• Program counter test

• Stack test

• Watchdog test

• Touch-sensing peripheral TSIv5 test

The following chapters describe each test with focus on the example application (debugging).

6.1 Clock test
The clock test procedure tests the oscilator frequency for the CPU core in the wrong frequency condition.

The default clock setting from the SDK library is used in the example. For a real application, ensure that the
reference clock source is not dependent on the primary (tested) clock.

 NOTE

6.2 CPU register
The CPU register test procedure tests all CPU registers for the stuck-at condition (except for the program counter register). The
program counter test is implemented as a stand-alone safety routine.

Some tests stay in an endless loop in case of an error, others return a corresponding error message.

6.3 DIO test
The Digital Input/Output (DIO) test procedure performs the plausibility check of the processor's digital IO interface.

Make sure that the time between the "set" and "get" functions is sufficient for the GPIO peripheral speed.

 NOTE

6.4 Invariable memory test
The invariable (Flash) memory test provides a CRC check of a dedicated part of memory. This test can be turned off in the
safety_config.h file.

The test consists of the following two parts:

• Post-build CRC calculation of the dedicated memory.

• Runtime CRC calculation and comparison with the post-build result.

NXP Semiconductors

i.MX8M Safety Example , Rev. 3, 07/2021
User's Guide 22 / 26

The post-build calculation is different for each IDE:

In the IAR IDE, the CRC is calculated by the IDE directly using the linker (see Options->Build Action). The Flash test is fully
integrated to the example project in the IAR IDE. It is necessary only to turn this test on in the safety_config.h file.

In the uVision Keil IDE, the CRC is calculated by the Srecord third-party tool, which is called from the IDE (see Options → User
→ After Build) The Flash test is fully integrated to the example project in the uVison Keil IDE. It is only necessary to turn this test
on in the safety_config.h file. In case of any issues, see Arm uVison Keil IDE postbuild CRC

In the MCUXpresso IDE, the CRC is calculated by the Srecord third-party tool. The user must do some additional steps. For more
information, see MCUxpresso postbuild CRC.

The invariable memory test example uses the crc.bat file for post-build calculation, so this example does not work
on a Unix/Mac operating system.

 NOTE

When you debug your application with the Flash test turned on, be careful when using the breakpoint. The software
breakpoint usually changes the CRC result and causes a safety error.

 NOTE

6.5 Variable memory test
The variable memory on the supported MCU is an on-chip RAM.

The RAM memory test is provided by the MarchC or MarchX tests.

The test copies a block of memory to the backup area defined by the linker. Be sure that the BLOCK_SIZE parameter is smaller
than the backup area defined by the linker.

This test cannot be interupted.

 NOTE

6.6 Program counter test
The CPU program counter register test procedure tests the CPU program counter register for the stuck-at condition. The program
counter register test can be performed once after the MCU reset and also during runtime.

The program counter test cannot be interrupted.

 NOTE

6.7 Stack test
This test routine is used to test the overflow and underflow conditions of the application stack. The testing of the stuck-at faults in
the memory area occupied by the stack is covered by the variable memory test. The overflow or underflow of the stack can occur
if the stack is incorrectly controlled or by defining the "too-low" stack area for the given application.

Choose a correct pattern to fill the tested area. This pattern must be unique to the application.

 NOTE

6.8 Watchdog test
The watchdog test provides the testing of the watchdog timer functionality. The test is run only once after the reset. The test causes
the WDOG reset and compares the preset time for the WDOG reset to the real time.

For this test to run correctly, it is necessary to keep the WDOG_backup variable in a part of memory which is not corrupeted by
the WDOG reset.

Variable memory test

i.MX8M Safety Example , Rev. 3, 07/2021
NXP Semiconductors 23

Some debuggers do not allow the WDOG reset. Due to this, it is necessary to turn off the WDOG when debugging
the application.

 NOTE

Watchdog test

i.MX8M Safety Example , Rev. 3, 07/2021
NXP Semiconductors 24

Chapter 7
Revision history

Table 1. Revision history

Revision number SDK Description

0 2.9.0 Intial release.

1 2.10.0 Change devices supported in SDK rel. 2.10.

2 2.10.0 Post-build description added.

3 - Version cover SDK 2.9 and SDK 2.10 release - document for web

NXP Semiconductors

i.MX8M Safety Example , Rev. 3, 07/2021
User's Guide 25 / 26

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder
to design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products
for any particular purpose, nor does NXP assume any liability arising out of the application
or use of any product or circuit, and specifically disclaims any and all liability, including
without limitation consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in different applications,
and actual performance may vary over time. All operating parameters, including “typicals,”
must be validated for each customer application by customer's technical experts. NXP does
not convey any license under its patent rights nor the rights of others. NXP sells products
pursuant to standard terms and conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC,
MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire,
ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,
PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform
in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D
are trademarks of NXP B.V. All other product or service names are the property of their
respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio,
CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled,
NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME,
ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected
by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle
and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and
Power.org word marks and the Power and Power.org logos and related marks are trademarks
and service marks licensed by Power.org.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 07/2021
Document identifier: IEC60730BIMX8MXEUG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 IEC60730B Safety library example user's guide
	2 Hardware settings
	2.1 EVK-MIMX8MM (Mini)
	2.2 EVK-MIMX8MN (Nano)

	3 File structure
	3.1 Library source files location
	3.2 Example of library handling code

	4 Example application
	4.1 How to open the project
	4.2 Build configurations
	4.3 Example settings - safety_config.h
	4.4 safety_test_items.c file
	4.5 Source file - safety_.c/.h

	5 Running example
	5.1 Post-build CRC calculation
	5.1.1 Postbuild in IEC60730B safety example
	5.1.2 Arm uVison Keil IDE postbuild CRC
	5.1.2.1 Postbuild CRC settings
	5.1.2.2 Debug initialization settings
	5.1.2.3 Linker settings for information table

	5.1.3 MCUxpresso postbuild CRC
	5.1.3.1 Post-build configuration
	5.1.3.2 Place information table
	5.1.3.3 Flash loader configuration

	6 IEC60730B tests
	6.1 Clock test
	6.2 CPU register
	6.3 DIO test
	6.4 Invariable memory test
	6.5 Variable memory test
	6.6 Program counter test
	6.7 Stack test
	6.8 Watchdog test

	7 Revision history

